K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 6 2015

\(A=\frac{1}{x^2+y^2}+\frac{1}{xy}=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}\)

ta có\(\frac{1}{x^2+y^2}+\frac{1}{2xy}\ge\frac{4}{x^2+y^2+2xy}=\frac{4}{\left(x+y\right)^2}\)

Áp dụng bất đẳng thức côsin cho 2 số dương , ta có:

\(2\sqrt{xy}\le x+y\le1\Leftrightarrow2xy\le\frac{1}{2}\)

Để A đạt GTNN thì \(\left(x+y\right)^2\)va\(2xy\) phai dat GTLN

\(\Rightarrow A\ge\frac{4}{1}+\frac{1}{2}\Leftrightarrow A\ge\frac{9}{2}\)

\(a=\frac{9}{2}\Leftrightarrow x=y=\frac{1}{2}\)

2 tháng 4 2017

=1/2

ai k mk thì mk tịk lại

10 tháng 1 2018

Áp dụng BĐT svacxơ, ta có 

\(\frac{1}{x^2+xy}+\frac{1}{y^2+xy}\ge\frac{4}{x^2+y^2+2xy}=\frac{4}{\left(x+y\right)^2}\ge4\)

Dấu = xảy ra <=>x=y=1/2

^_^

13 tháng 3 2017

cac ban tra loi di

5 tháng 12 2018

ĐK: x khác 0

Từ\(2x^2+\frac{y^2}{4}+\frac{1}{x^2}=4\)

\(\Rightarrow x^2+2+\frac{1}{x^2}+x^2+xy+\frac{y^2}{4}=6+xy\)

\(\Leftrightarrow\left(x+\frac{1}{x}\right)^2+\left(x+\frac{y}{2}\right)^2=6+xy\)

Do VT > 0\(\Rightarrow6+xy\ge0\Rightarrow xy\ge6\)
Có A = 2016 + xy > 2016 + 6 = 2022

29 tháng 1 2019

tth : Viết nhầm :V
Đoạn cuối \(6+xy\ge0\Rightarrow xy\ge-6\)

Có A = 2016 + xy > 2016 - 6 = 2010 !!!

Được rồi chứ gì -.- 

9 tháng 4 2016

Bài  \(1a.\)  Tìm  \(x,y,z\)  biết \(x^2+4y^2=2xy+1\)   \(\left(1\right)\)  và  \(z^2=2xy-1\)  \(\left(2\right)\)

Cộng  \(\left(1\right)\)  và  \(\left(2\right)\)  vế theo vế, ta được:

\(x^2+4y^2+z^2=4xy\)

\(\Leftrightarrow\)  \(x^2-4xy+4y^2+z^2=0\)

\(\Leftrightarrow\)  \(\left(x-2y\right)^2+z^2=0\)

Do  \(\left(x-2y\right)^2\ge0\)  và  \(z^2\ge0\)  với mọi  \(x,y,z\)

nên để thỏa mãn đẳng thức trên thì phải đồng thời xảy ra  \(\left(x-2y\right)^2=0\)  và  \(z^2=0\)

\(\Leftrightarrow\)  \(^{x-2y=0}_{z^2=0}\)  \(\Leftrightarrow\)  \(^{x=2y}_{z=0}\)

Từ  \(\left(2\right)\), với chú ý rằng  \(x=2y\)  và  \(z=0\), ta suy ra:

\(2xy-1=0\)  \(\Leftrightarrow\)  \(2.\left(2y\right).y-1=0\)  \(\Leftrightarrow\)  \(4y^2-1=0\)  \(\Leftrightarrow\)  \(y^2=\frac{1}{4}\)  \(\Leftrightarrow\)  \(y=\frac{1}{2}\)  hoặc  \(y=-\frac{1}{2}\)

\(\text{*)}\)  Với  \(y=\frac{1}{2}\) kết hợp với \(z=0\) \(\left(cmt\right)\)  thì  \(\left(2\right)\)  \(\Rightarrow\)  \(2.x.\frac{1}{2}-1=0\)  \(\Leftrightarrow\)  \(x=1\)

\(\text{*)}\)  Tương tự với trường hợp  \(y=-\frac{1}{2}\), ta cũng dễ dàng suy ra được \(x=-1\)

Vậy, các cặp số  \(x,y,z\)  cần tìm là  \(\left(x;y;z\right)=\left\{\left(1;\frac{1}{2};0\right),\left(-1;-\frac{1}{2};0\right)\right\}\)

\(b.\)  Vì  \(x+y+z=1\)  nên  \(\left(x+y+z\right)^2=1\)

\(\Leftrightarrow\)  \(x^2+y^2+z^2+2\left(xy+yz+xz\right)=1\)  \(\left(3\right)\)

Mặt khác, ta lại có  \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)  \(\Rightarrow\)  \(xy+yz+xz=0\)  \(\left(4\right)\) (do  \(xyz\ne0\))

Do đó,  từ  \(\left(3\right)\) và \(\left(4\right)\)  \(\Rightarrow\)  \(x^2+y^2+z^2=1\)

Vậy,  \(B=1\)

9 tháng 4 2016

1a) x=1, y=1/2, z=0

15 tháng 5 2018

\(\frac{1}{2}=\frac{1}{x^2}+\frac{1}{y^2}\ge\frac{2}{xy}\)

\(\Leftrightarrow xy\ge4\)

\(\Rightarrow A=xy+2017\ge4+2017=2021\)

24 tháng 8 2020

Bổ đề:  \(\left(mn+np+pm\right)^2\ge3mnp\left(m+n+p\right)\)(*)

Thật vậy: (*)\(\Leftrightarrow m^2n^2+n^2p^2+p^2m^2+2mnp\left(m+n+p\right)\ge3mnp\left(m+n+p\right)\)\(\Leftrightarrow m^2n^2+n^2p^2+p^2m^2\ge mnp\left(m+n+p\right)\)\(\Leftrightarrow m^2n^2+n^2p^2+p^2m^2-mnp\left(m+n+p\right)\ge0\)\(\Leftrightarrow\left(mn-np\right)^2+\left(np-pm\right)^2+\left(pm-mn\right)^2\ge0\)*đúng*

Vậy bổ đề được chứng minh

Áp dụng vào bài toán, ta được: \(\left(xy+yz+zx\right)^2\ge3xyz\left(x+y+z\right)\)hay \(\left(xy+yz+zx\right)^2\ge3\left(x+y+z\right)\)(Do xyz = 1)

\(\Leftrightarrow\frac{1}{x+y+z}\ge\frac{3}{\left(xy+yz+zx\right)^2}\Rightarrow A\ge\frac{3}{\left(xy+yz+zx\right)^2}-\frac{2}{xy+yz+zx}\)

Đặt \(\frac{1}{xy+yz+zx}=s\)thì \(A\ge3s^2-2s=3\left(s^2-\frac{2}{3}s+\frac{1}{9}\right)-\frac{1}{3}=3\left(s-\frac{1}{3}\right)^2-\frac{1}{3}\ge-\frac{1}{3}\)

Vậy \(A\ge-\frac{1}{3}\)

Đẳng thức xảy ra khi \(\hept{\begin{cases}x,y,z>0\\x=y=z\\\frac{1}{xy+yz+zx}=\frac{1}{3}\end{cases}}\Rightarrow x=y=z=1\)

Vậy \(MinA=-\frac{1}{3}\), đạt được khi x = y = z = 1