XÉT BIỂU THỨC;
A= giá trị tuyệt đối của (x - \(\frac{1}{2}\))+\(\frac{3}{4}\)- x
a,Viết biểu thức A dưới dạng ko có dấu giá trị tuyệt đối
b,Tìm giá trị nhỏ nhất của A
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
f(x) = 4x2 – 1 = (2x – 1)(2x + 1)
Nhị thức 2x – 1 có nghiệm x = 1/2, nhị thức 2x + 1 có nghiệm x = –1/2.
Ta có bảng xét dấu:
Kết luận :
+ f(x) > 0 khi x < –1/2 hoặc x > 1/2.
+ f(x) < 0 khi –1/2 < x < 1/2
+ f(x) = 0 khi x = 1/2 hoặc x = –1/2.
\(y=\left(x-1\right)^2\)
+) \(x-1=0\Leftrightarrow x=1\)
+) Vẽ trục xét dấu:
+) Ta thấy: \(y>0\) với mọi \(x\in R\); \(y< 0\) với mọi \(x\in\phi\)
Chúc bn học tốt!
Có mũi tên chỗ trục nha nhưng mình chẳng hiểu sao lúc đăng lên nó bay mất r :((
Ta có:
Nhị thức –5x – 11 có nghiệm là –11/5, nhị thức 3x +1 có nghiệm là –1/3, nhị thức 2 – x có nghiệm là 2.
Ta có bảng xét dấu:
Kết luận :
+ f(x) > 0 khi –11/5 < x < –1/3 hoặc x > 2.
+ f(x) < 0 khi x < –11/5 hoặc –1/3 < x < 2.
+ f(x) = 0 khi x = –11/5.
+ Khi x = –1/3 hoặc x = 2, f(x) không xác định.
Δ=(-1)^2-4*1*6=1-24=-23<0
=>f(x) luôn cùng dấu với a=1
=>f(x)>0 với mọi x
Các nghiệm này chia khoảng thành ba khoảng, trong mỗi khoảng các nhị thức đã cho có dấu hoàn toàn xác định.
Từ bảng xét dấu ta thấy:
Trả lời câu hỏi Toán 10 Đại số Bài 3 trang 92: Giải bất phương trình x3 – 4x < 0.
Lời giải
x3 – 4x < 0 ⇔ x(x2 - 4) < 0 ⇔ x(x - 2)(x + 2) < 0
Ta có bảng xét dấu
Từ bảng xét dấu ta có tập nghiệm của bất phương trình là:
S = (-∞;2) ∪ (0;2)