S =1+3+3^2+3^3+...+3^20
SÓA SÁNH S VỚI 1/2 .3^21
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(3S=1+\dfrac{1}{3}+...+\dfrac{1}{3^{99}}\)
=>2S=1-1/3^100
=>S=1/2-1/2*3^100<1/2
a) Ta có: 2003^152>2003^20>199^20
Vậy 2003^152>199^20
b) Ta có: 3^39=(3^13)^3=1594323^3
11^21=(11^7)^3=19487171^3
Vì 1594323^3<19487171^3 nên 3^39<11^21
Sửa đề: \(S=\dfrac{1}{20}+\dfrac{1}{21}+\dfrac{1}{22}+...+\dfrac{1}{50}\)
Ta có: \(S=\dfrac{1}{20}+\dfrac{1}{21}+\dfrac{1}{22}+...+\dfrac{1}{50}\)
\(=\dfrac{1}{20}+\left(\dfrac{1}{21}+\dfrac{1}{22}+...+\dfrac{1}{30}\right)+\left(\dfrac{1}{31}+\dfrac{1}{32}+...+\dfrac{1}{40}\right)+\left(\dfrac{1}{41}+\dfrac{1}{42}+...+\dfrac{1}{50}\right)\)
\(\Leftrightarrow S>\dfrac{1}{20}+\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}=\dfrac{1}{4}+\dfrac{1}{3}+\dfrac{1}{4}\)
\(\Leftrightarrow S>\dfrac{1}{4}+\dfrac{1}{4}+\dfrac{1}{4}=\dfrac{3}{4}\)(đpcm)
nhận xét :
\(\frac{1}{2^2}< \frac{1}{2.3}=\frac{1}{2}-\frac{1}{3}\)
\(\frac{1}{3^2}< \frac{1}{3.4}=\frac{1}{3}-\frac{1}{4}\)
.............
\(\frac{1}{100^2}=\frac{1}{100.101}=\frac{1}{100}-\frac{1}{101}\)
vậy
\(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}< \frac{1}{2}-\frac{1}{101}=\frac{9}{202}< \frac{3}{4}\)
Ta có: \(\frac{1}{3^2}< \frac{1}{2.3};\frac{1}{4^2}< \frac{1}{3.4};.....;\frac{1}{100^2}< \frac{1}{99.100}\)
=>\(S=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{2^2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{99.100}\)
=>\(S< \frac{1}{4}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{99}-\frac{1}{100}\)
=>\(S< \frac{1}{4}+\frac{1}{2}-\frac{1}{100}=\frac{3}{4}-\frac{1}{100}< \frac{3}{4}\)
=>S<3/4(đpcm)
\(S=1+3+3^1+3^2+3^3+.....+3^{20}\)
\(3S=3.\left(1+3+3^1+3^2+3^3+.....+3^{20}\right)\)
\(3S=3.1+3.3^1+3.3^2+3.3^3+.....+3.3^{20}\)
\(3S=3+3^2+3^3+3^4+...+3^{21}\)
\(2S=3S-S\)
\(2S=\left(3+3^2+3^3+3^4+.....+3^{21}\right)-\left(1+3^1+3^2+3^3+.....+3^{20}\right)\)
\(2S=3^{21}-1\)
\(\Rightarrow S=\frac{3^{21}-1}{2}\)
\(\frac{1}{2}.3^{21}=3^{21}\div2\)
Vì \(\frac{3^{21}-1}{2}< 3^{21}\div2\)nên S < \(\frac{1}{2}.3^{21}\)