phân tích đa thức thành nhân tử
32x-2x^3+4x^2y-2xy^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(x^2-2xy+y^2-2x+2y\)
\(=\left(x-y\right)^2-2\left(x-y\right)\)
\(=\left(x-y\right)\left(x-y-2\right)\)
b) Ta có: \(x^2-4x+4-x^2y+2xy\)
\(=\left(x-2\right)^2-xy\left(x-2\right)\)
\(=\left(x-2\right)\left(x-2-xy\right)\)
a) xy+3x-7y-21
=x(y+3)-7(x+3)
=(x-7)(y+3)
b)2xy-15-6x-5y
=2x(y-3)-5(-3+y)
=(2x-5)(y-3)
c)2x^2y+2xy^2-2x-2y
=2x(xy-1)+2y(xy-1)
=(2x+2y)(xy-1)
x(x+3)-5x(x-5)-5(x+3)
=(x-5)(x+3)-5x(x-5)
=(x-5)(x+3-5x)
Câu cuối mình bị nhầm dòng cuối phải là (x-5)(x+3+x-5)=(x-5)(2x-2)nha bạn
\(1,=x\left(x^2-2x+1-y^2\right)=x\left[\left(x-1\right)^2-y^2\right]=x\left(x-y-1\right)\left(x+y-1\right)\\ 2,=\left(x+y\right)^3\\ 3,=\left(2y-z\right)\left(4x+7y\right)\\ 4,=\left(x+2\right)^2\\ 5,Sửa:x\left(x-2\right)-x+2=0\\ \Leftrightarrow\left(x-2\right)\left(x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
a)\(=2\left(x^2+2x+1-y^2\right)=2\left[\left(x+1\right)^2-y^2\right]=2\left(x-y+1\right)\left(x+y+1\right)\)
b)\(=16-\left(x^2-2xy+y^2\right)=16-\left(x-y\right)^2=\left(4-x+y\right)\left(4+x-y\right)\)
\(1,x^3+2x^2y+xy^2-4x\)
\(x\left(x^2+2xy+y^2-4\right)\)
\(x\left[\left(x+y\right)^2-2^2\right]\)
\(x\left(x+y+2\right)\left(x+y-2\right)\)
\(2,5x-5y-x^2+2xy-y^2\)
\(5\left(x-y\right)-\left(x^2-2xy+y^2\right)\)
\(5\left(x-y\right)-\left(x-y\right)^2\)
\(\left(x-y\right)\left(5-x+y\right)\)
\(3,x^4-3x^2\)
\(x^2\left(x^2-3\right)\)
a) \(x^2-2x-4y^2-4y=\left(x^2-2x+1\right)-\left(4y^2+4y+1\right)\)
\(=\left(x-1\right)^2-\left(2y+1\right)^2=\left(x-1-2y-1\right)\left(x-1+2y+1\right)\)
\(=\left(x-2y-3\right)\left(x+2y\right)\)
b) \(x^2-4x^2y^2+y^2+2xy=\left(x^2+2xy+y^2\right)-4x^2y^2\)
\(=\left(x+y\right)^2-4x^2y^2=\left(x+y-2xy\right)\left(x+y+2xy\right)\)
c) \(x^6-x^4+2x^3+2x^2=\left(x^6+2x^3+1\right)-\left(x^4-2x^2+1\right)\)
\(=\left(x^3+1\right)^2-\left(x^2-1\right)^2=\left(x^3+1-x^2+1\right)\left(x^3+1+x^2-1\right)=x^2\left(x^3-x^2+2\right)\left(x+1\right)\)
d) \(x^3+3x^2+3x+1-8y^3=\left(x+1\right)^3-8y^3=\left(x+1-2y\right)\left(x^2+2x+1+2xy+2y+4y^2\right)\)
\(32x-2x^3+4x^2y-2xy^2=2x\left(16-x^2+2xy-y^2\right)=2x\left(4+x-y\right)\left(4-x+y\right)\)