Giải hệ phương trình: \(\hept{\begin{cases}x^2-x-2\left(y^2-y\right)-xy=0\\3x^2+2xy+8y=-1\end{cases}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\hept{\begin{cases}\left(x+1\right)\left(y+1\right)=8\\x\left(x+1\right)+y\left(y+1\right)+xy=17\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x+y+xy=7\\x^2+y^2+x+y+xy=17\end{cases}}\)
Dat \(\hept{\begin{cases}xy=P\\x+y=S\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}S+P=7\\S^2+S-P=17\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}P=7-S\\S^2+S-\left(7-S\right)=17\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}P=7-S\\S^2+2S=24\end{cases}}\)
\(\hept{\begin{cases}S=-6\\P=13\\S=4;P=3\end{cases}}\)
b)
Viết lại phương trình thứ 2 của hệ thành:
\(\hept{\begin{cases}x^2+x\left(y-3\right)+y^2-4y+4=0\\y^2+y\left(x-4\right)+x^2-3x+4=0\end{cases}}\) \(\Leftrightarrow\)\(\hept{\begin{cases}\Delta_x\ge0\\\Delta_y\ge0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}1\le y\le\frac{7}{3}\\0\le x\le\frac{4}{3}\end{cases}}\)
Thế \(xy=-x^2-y^2+3x+4y-4\)từ pt (2) vào pt (1) ta được:
\(3x^3+18x^2+45x-3y^3+3y^2+8y-108=0\)
- Xét hàm số: \(f\left(x\right)=3x^3+18x^2+45x\)trên \(\left[0;\frac{4}{3}\right]\)ta có: \(f'\left(x\right)=9x^2+6x+45>0\)
nên hàm số f(x) đồng biến. suy ra: \(f\left(x\right)\le f\left(\frac{4}{3}\right)=\frac{892}{9}\)
- Xét hàm số: \(g\left(y\right)=-3y^3+3y^2+8y-108\)trên \(\left[0;\frac{7}{3}\right]\)ta có: \(g'\left(y\right)=-9y^2+6y+8,\)
\(g'\left(y\right)=0\)\(\Leftrightarrow\)\(y=\frac{4}{3}\) suy ra: \(g\left(y\right)\le g\left(\frac{4}{3}\right)=\frac{-892}{0}\)
suy ra: \(f\left(x\right)+g\left(y\right)\le0\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y=\frac{4}{3}\)
thử lại thấy đúng
nên cặp nghiệm \(\left(x;y\right)=\left(\frac{4}{3};\frac{4}{3}\right)\)thỏa mãn hệ
p/s: chúc bạn học tốt, cách này đối vs bạn chắc khó hiểu, có j thì hỏi thầy cô dạy cho dễ hiểu nha hoặc ib mk (nhưng mk mak giải thích thì chắc bạn khó hiểu hơn ^^ ko có khiếu ăn nói)
\(\hept{\begin{cases}x+y-2xy=0\\x+y-x^2y^2=\sqrt{\left(xy-1\right)^2+1}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x+y=2xy\\2xy-x^2y^2=\sqrt{x^2y^2-2xy+2}\left(1\right)\end{cases}}\)
đặt 2xy-x^2y^2=t
=> (1) \(\Leftrightarrow t=\sqrt{2-t}\)
Tự làm nốt nhé
\(\Leftrightarrow\hept{\begin{cases}x+y-2xy=0\\x+y-x^2y^2=\sqrt{x^2y^2-2xy+2}\end{cases}}\)
Đặt x+y=a, xy=b
\(\Rightarrow\hept{\begin{cases}a-2b=0\\a-b^2=\sqrt{b^2-2b+2}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a=2b\\2b-b^2=\sqrt{b^2-2b+2}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a=2b\\b^4-4b^3+4b^2=b^2-2b+2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a=2b\\b^4-4b^3+3b^2+2b-2=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a=2b\\\left(b-1\right)^2\left(b^2-2b-2\right)=0\end{cases}}\)
Đến đây đơn giản rồi nhé :P
\(a,\hept{\begin{cases}\left(x-y\right)^2=1\\2x^2+2y^2-2xy-y=0\end{cases}}\)
Xét từng TH với x-y=1 và x-y=-1
\(b,\hept{\begin{cases}\left(x-1\right)\left(y+2\right)=0\\xy-3x+2y=0\end{cases}}\)
Xét từng TH x=1 và y=-2