Cho tam giác ABC Gọi M là điểm bất kì trên cạnh BC.Gọi D,E lần lươt là hình chiếu của M trên AB và AC .xác định vị trí của M để tam giác MDE có chu vi nhỏ nhất
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài làm:
Ta có: Vị trí của điểm D trên BC để AD nhỏ nhất nếu D là chân đường cao kẻ từ A xuống BC
Bây giờ ta cần chứng minh AD=EF để suy ra điều phải CM.
Ta có: AE//DF (vì cùng vuông góc với AC) và ED//AF (vì cùng vuông góc với AB)
=> \(\hept{\begin{cases}AE=DF\\FA=ED\end{cases}\left(1\right)}\)
\(\Delta AEF=\Delta DFE\left(2.c.g.v\right)\)
vì: \(\hept{\begin{cases}AE=DF\\FA=ED\end{cases}theo\left(1\right)}\)
=> AD=EF
Mà AD đạt giá trị nhỏ nhất khi D là chân đường cao AD
=> EF nhỏ nhất khi D là chân đường cao xuất phát từ A xuống BC
Học tốt!!!!
TH1: nếu tam giác ABC vuông tại A . bạn tự vẽ hình nhé
dễ thấy tứ giác ADME là hình chữ nhật .=> diện tích ADME=EM.MD
diện tích tam giác ABC=S=(AC.AB)/2
mặt khác ta có AC=AE+EC\(\ge\sqrt{AE\cdot EC}\)
\(AB=AD+DB\ge2\sqrt{AD\cdot DB}\)
==>\(AC\cdot AB\ge4\sqrt{AE\cdot EC\cdot AD\cdot DB}\)
ta có tam giác CEM đồng dạng tam giác MDB(g.g)=>\(\frac{CE}{MD}=\frac{EM}{DB}\)
=> CE.DB=EM.MD mà AE=MD ;AD=EM
do đó AE.EC.AD.DB=\(\left(EM\cdot MD\right)^2\)
=>2.diện tích ABC\(\ge\) diện tích tứ giác ADME==>diện tích ADME\(\le\frac{S}{2}\)
do đó MAX diện tích ADME=S/2 hay MAX diện tích MDE=S/4
dấu'=' xảy ra khi AE=EC và DA=DB hay M là trung điểm của BC