Cho tam giác ABC , các đường cao BD,CE cắt nhau tại H.Chứng minh:
a)Các điểm B,E,D,C cùng thuộc một đường tròn .Xác định tâm và bán kính đường tròn
b)Các điểm A,E,H,D cùng thuộc một đường tròn .
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Sửa đề: 5 điểm A,B,D,F,E cùng thuộc một đường tròn
Xét tứ giác ABFE có
\(\widehat{AFB}=\widehat{AEB}\left(=90^0\right)\)
\(\widehat{AFB}\) và \(\widehat{AEB}\) là hai góc cùng nhìn cạnh AB
Do đó: ABFE là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
Suy ra: A,B,F,E cùng thuộc 1 đường tròn(1)
Xét tứ giác ABDE có
\(\widehat{ADB}=\widehat{AEB}\left(=90^0\right)\)
\(\widehat{ADB}\) và \(\widehat{AEB}\) là hai góc cùng nhìn cạnh AB
Do đó: ABDE là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
Suy ra: A,B,D,E cùng thuộc 1 đường tròn(2)
Từ (1) và (2) suy ra A,B,D,F,E cùng thuộc 1 đường tròn(đpcm)
Tâm I của đường tròn này là trung điểm của AB
Câu 1
Xét tam giác OAC ta có
AC = OA = OC ( gt )
=> tam giác OAC là tam giác đều
=>\(\widehat{CAB}=60^0\)
\(\widehat{ACB}=90^0\)(góc nội tiếp chắn nửa đường tròn )
=> \(\widehat{ABC}=180^0-90^0-60^0=30^0\)
Vậy ..............
P/s hình hơi xấu thông cảm
Câu 2 )
Xét tam giác vuông KCB , ta có :
EC = EK ( gt )
MB = MC ( gt)
=>EM là đường trung bình của tam giác KCB
=> \(\widehat{BKC}=\widehat{MEC}=90^0\)
Chứng minh tương tự : Xét tam giác ECB
=> \(\widehat{CIB}=\widehat{MPB}=90^0\)
Xét tứ giác BIKC , ta có:
\(\widehat{BKC}\)và \(\widehat{BIC}\)cùng nhìn BC dưới 1 góc 90 độ )
=> Tứ giác BIKC nội tiếp đường tròn
=> 4 điểm B,I,K,C cùng nằm trên 1 đường tròn
P/ s hình tự vẽ , tham khảo bài làm nha bạn
a/ Ta có
^AIB=90 (góc nt chắn nửa đường tròn) => BI vuông góc AE
d vuông góc với AB tại M
=> M và I cùng nhìn BE dưới 1 góc 90 => M; I cùng nằm trên đường tròn đường kính BE => MBEI là tứ giác nội tiếp
b/ Xét tam giác vuông MEA và tam giác vuông IEH có ^AEM chung => tg MEA đồng dạng với tg IEH
d/ Xét tg ABE có
BI vuông góc AE
ME vuông góc AB
=> H là trực tâm cuat tg ABE
Ta có ^AKB =90 (góc nt chắn nửa đường tròn => AK vuông góc với BE
=> AK đi qua H (trong tam giác 3 đường cao đồng quy
=> Khi E thay đổi HK luôn đi qua A cố định
Cô hướng dẫn nhé :)
a. Ta thấy góc MBE = góc BIE = 90 độ nên từ giác MBEI nội tiếp đường tròn đường kính BE, vậy tâm là trung điểm BE.
b. \(\Delta IEH\sim\Delta MEA\left(g-g\right)\) vì có góc EIH = góc EMA = 90 độ và góc E chung.
c. Từ câu b ta có : \(\frac{IE}{EM}=\frac{EH}{EA}\Rightarrow EH.EM=IE.EA\) Vậy ta cần chứng minh \(EC.ED=IE.EA\)
Điều này suy ra được từ việc chứng minh \(\Delta IED\sim\Delta CEA\left(g-g\right)\)
Hai tam giác trên có góc E chung. góc DIE = góc ACE (Tứ giác AIDC nội tiếp nên góc ngoài bằng góc tại đỉnh đối diện)
d. Xét tam giác ABE, ta thấy do I thuộc đường trong nên góc AIB = 90 độ. Vậy EM và BI là các đường cao, hay H là trực tâm của tam giác ABE. Ta thấy AK vuông góc BE, AH vuông góc BE, từ đó suy ra A, H ,K thẳng hàng. Vậy khi E thay đổi HK luôn đi qua A.
Tự mình trình bày để hiểu hơn nhé . Chúc em học tốt ^^