Chứng minh rằng nếu 2^n - 1 là số nguyên tố (n-2) thì 2^n + 1 là hợp số
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn xem lời giải chi tiêt ở đường link phía dưới nhé:
Câu hỏi của Bùi Nguyễn Việt Anh - Toán lớp 6 - Học toán với OnlineMath
Xột số A = (2n – 1)2n(2n + 1)
A là tích của 3 số tự nhiên liờn tiệp nên A ⋮ 3
Mặt khỏc 2n – 1 là số nguyên tố ( theo giả thiết )
2n không chia hết cho 3
Vậy 2n + 1 phải chia hết cho 3 ⇒ 2n + 1 là hợp số.
Gọi 2n-1,2n,2n+1 là 3 số nguyên liên tiếp (n>2)
Ta có
2n-1 là số nguyên tố lớn hơn 3
=>2n-1 không chia hết cho 3
2n không chia hết cho 3
Vì 2n-1,2n,2n+1 là 3 số nguyên liên tiếp
=> 1 trong 3 số phải chia hết cho 3
=> 2n+1 chia hết cho3 (1)
Vì n>2
=> 2n+1 > 3 (2)
Từ (1) và (2)
=> 2n+1 là hợp số
=> DPCM