K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 7 2022

a) Ta có \(\sqrt{x-4\sqrt{x-4}}=\sqrt{\left(x-4\right)-4\sqrt{x-4}+4}\) \(=\sqrt{\left(\sqrt{x-4}-2\right)^2}=\left|\sqrt{x-4}-2\right|\) 

b) Ta có \(\sqrt{x-2+2\sqrt{x-3}}=\sqrt{\left(x-3\right)+2\sqrt{x-3}+1}\) \(=\sqrt{\left(\sqrt{x-3}+1\right)^2}=\sqrt{x-3}+1\) (vì \(\sqrt{x-3}+1>0\) với \(x\ge3\))

c) Ta có \(\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}\) \(=\sqrt{\left(x-1\right)+2\sqrt{x-1}+1}+\sqrt{\left(x-1\right)-2\sqrt{x-1}+1}\)\(=\sqrt{\left(\sqrt{x-1}+1\right)^2}+\sqrt{\left(\sqrt{x-1}-1\right)^2}\) \(=\sqrt{x-1}+1+\left|\sqrt{x-1}-1\right|\)

d) Ta có \(\sqrt{x-2\sqrt{x}+1}+\sqrt{x+2\sqrt{x}+1}\) \(=\sqrt{\left(\sqrt{x}-1\right)^2}+\sqrt{\left(\sqrt{x}+1\right)^2}\) \(=\left|\sqrt{x}-1\right|+\sqrt{x}+1\)

10 tháng 4 2021

a, Để A nhận giá trị dương thì \(A>0\)hay \(x-1>0\Leftrightarrow x>1\)

b, \(B=2\sqrt{2^2.5}-3\sqrt{3^2.5}+4\sqrt{4^2.5}\)

\(=4\sqrt{5}-9\sqrt{5}+16\sqrt{5}=\left(4-9+16\right)\sqrt{5}=11\sqrt{5}\)

( theo công thức \(A\sqrt{B}=\sqrt{A^2B}\))

c, Với \(a\ge0;a\ne1\)

\(C=\left(\frac{1-a\sqrt{a}}{1-\sqrt{a}}+\sqrt{a}\right)\left(\frac{1-\sqrt{a}}{1-a}\right)^2\)

\(=\left(\frac{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}+a\right)}{1-\sqrt{a}}+\sqrt{a}\right)\left(\frac{1-\sqrt{a}}{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)}\right)^2\)

\(=\left(\sqrt{a}+1\right)^2.\frac{1}{\left(\sqrt{a}+1\right)^2}=1\)

16 tháng 10 2021

a: Ta có: \(x=\sqrt{28-16\sqrt{3}}+2\sqrt{3}\)

\(=4-2\sqrt{3}+2\sqrt{3}\)

=4

Thay x=4 vào B, ta được:

\(B=\dfrac{2-4}{2}=-1\)

7 tháng 3 2021

a ĐKXĐ: \(x>0;x\ne4\)

\(\Rightarrow P=\left(\dfrac{\sqrt{x}-2}{\sqrt{x}+2}-\dfrac{\sqrt{x}}{\sqrt{x}+2}\right):\left(\dfrac{2}{x-4}+\dfrac{1}{\sqrt{x}+2}\right)=\left(\dfrac{\sqrt{x}-2-\sqrt{x}}{\sqrt{x}+2}\right):\left(\dfrac{2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}+\dfrac{1}{\sqrt{x}+2}\right)=\dfrac{-2}{\sqrt{x}+2}:\left(\dfrac{2+\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\right)=-\dfrac{2}{\sqrt{x}+2}:\dfrac{\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}=-\dfrac{2\left(\sqrt{x-2}\right)}{\sqrt{x}}=\dfrac{4-2\sqrt{x}}{\sqrt{x}}\)  b. Vì P và x cùng dấu \(\Rightarrow P>0\Rightarrow\dfrac{4-2\sqrt{x}}{\sqrt{x}}>0\Rightarrow4-2\sqrt{x}>0\) (vì \(\sqrt{x}>0\) ) \(\Rightarrow-2\sqrt{x}>-4\Rightarrow\sqrt{x}< 2\Rightarrow x< 4\) kết  hợp với điều kiện

\(\Rightarrow0< x< 4\)

11 tháng 9 2016

\(A=x-\sqrt{x^2+2x+1}\)

\(=x-x-1\)

\(=-1\)

11 tháng 9 2016
Bài giải bị thiếu rồi