Cho tam giác ABC , điểm M nằm trên cạnh BC sao cho BM = 2 MC , điểm N trên cạnh CA sao cho CN = 3 NA . Gọi D là giao điểm của AM và BN . Tính diện tích tam giác ABC nếu biết diện tích tam giác AND bằng 10 cm2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có CN = 3NA hay CA = 4NA
SAND = 1/4SADC (2 tam giác này có CA=4NA, chung đường cao kẻ từ D).
=> SADC = 10 x 4 = 40 (cm2)
Ta lại có SAMC = 1/2SAMB (BM=2MC, chung đường cao kẻ từ A). Mà 2 tam giác này có AM chung nên đường cao kẻ từ B gấp 2 lần đường cao kẻ từ C xuống AM.
Hai đường cao này cũng là 2 đường cao của 2 tam giác ADB và ADC
SADC = 1/2SADB => SADB = 40 x 2 = 80 (cm2)
SANB = SAND + SADB = 10 + 80 = 90 (cm2)
Mà SANB = 1/4SABC (2 tam giác này có CA=4NA, chung đường cao kẻ từ A).
Vậy SABC = 90 x 4 = 360 (cm2)
Ta có CN = 3NA hay CA = 4NA
SAND = 1/4SADC (2 tam giác này có CA=4NA, chung đường cao kẻ từ D).
=> SADC = 10 x 4 = 40 (cm2)
Ta lại có SAMC = 1/2SAMB (BM=2MC, chung đường cao kẻ từ A). Mà 2 tam giác này có AM chung nên đường cao kẻ từ B gấp 2 lần đường cao kẻ từ C xuống AM.
Hai đường cao này cũng là 2 đường cao của 2 tam giác ADB và ADC.
SADC = 1/2SADB => SADB = 40 x 2 = 80 (cm2)
SANB = SAND + SADB = 10 + 80 = 90 (cm2)
Mà SANB = 1/4SABC (2 tam giác này có CA=4NA, chung đường cao kẻ từ A).
Vậy SABC = 90 x 4 = 360 (cm2)
Ta có CN = 3NA hay CA = 4NA
SAND = 1/4SADC (2 tam giác này có CA=4NA, chung đường cao kẻ từ D).
=> SADC = 10 x 4 = 40 (cm2)
Ta lại có SAMC = 1/2SAMB (BM=2MC, chung đường cao kẻ từ A). Mà 2 tam giác này có AM chung nên đường cao kẻ từ B gấp 2 lần đường cao kẻ từ C xuống AM.
Hai đường cao này cũng là 2 đường cao của 2 tam giác ADB và ADC.
SADC = 1/2SADB => SADB = 40 x 2 = 80 (cm2)
SANB = SAND + SADB = 10 + 80 = 90 (cm2)
Mà SANB = 1/4SABC (2 tam giác này có CA=4NA, chung đường cao kẻ từ A).
Vậy SABC = 90 x 4 = 360 (cm2)
Giải:
S.ADC=4xS.ADN=10x4=40(cm2)(chung chiều caohạ từ D xuống AC và Ac=4xAN) S.AMB=2xS.AMC(chung chiều cao hạ từ A xuống BC, đáy BM=2xMC)mà 2 tam giác có chung dáy AMSuy ra chiều cao hạ từ B xuống AM bằng 2 lần chiều cao hạ từ C xuống AM)
Vậy S.ADB=2xS.ADC=40x2=80cm2
S.ABN= 80+10=90(bằng S.ABD+S.ADC)
S.ABC= SABNx4= 90x4=360 cm2
Giải:
Ta có : CN = 3NA hay CA = 4NA
SAND = 1/4SADC (2 tam giác này có CA=4NA, chung đường cao kẻ từ D).
=> SADC = 10 x 4 = 40 (cm2)
Ta lại có SAMC = 1/2SAMB (BM=2MC, chung đường cao kẻ từ A). Mà 2 tam giác này có AM chung nên đường cao kẻ từ B gấp 2 lần đường cao kẻ từ C xuống AM.
Hai đường cao này cũng là 2 đường cao của 2 tam giác ADB và ADC.
SADC = 1/2SADB => SADB = 40 x 2 = 80 (cm2)
SANB = SAND + SADB = 10 + 80 = 90 (cm2)
Mà SANB = 1/4SABC (2 tam giác này có CA=4NA, chung đường cao kẻ từ A).
Vậy SABC = 90 x 4 = 360 (cm2)
Giải :"
Ta có : CN = 3NA hay CA = 4NA
=> SAND = 1/4SADC (CA = 4NA, chung đường cao kẻ từ D)
=> SADC = 10 x 40 = 40 (cm2)
Lại có SAMC = 1/2SAMB (BM = 2MC, chung đường cao kẻ từ A), vì cả hai tam giác cùng có AM chung nên đường cao kẻ từ B gấp 2 lần đường cao kẻ từ C xuống AM
Và hai đường cao này là hai đường cao của hai tam giác ADB và ADC
=> SADC = 1/2SADB => SADB = 40 x 2 = 80 (cm2)
=> SANB = SAND + SADB = 10 + 80 = 90 (cm2)
Mà SANB = 1/4SABC (CA = 4NA, chung đường cao kẻ từ A)
=> SABC = 90 x 4 = 360 (cm2) <học tốt>
#)Giải :
Ta có : CN = 3NA hay CA = 4NA
=> SAND = 1/4SADC (CA = 4NA, chung đường cao kẻ từ D)
=> SADC = 10 x 40 = 40 (cm2)
Lại có SAMC = 1/2SAMB (BM = 2MC, chung đường cao kẻ từ A), vì cả hai tam giác cùng có AM chung nên đường cao kẻ từ B gấp 2 lần đường cao kẻ từ C xuống AM
Và hai đường cao này là hai đường cao của hai tam giác ADB và ADC
=> SADC = 1/2SADB => SADB = 40 x 2 = 80 (cm2)
=> SANB = SAND + SADB = 10 + 80 = 90 (cm2)
Mà SANB = 1/4SABC (CA = 4NA, chung đường cao kẻ từ A)
=> SABC = 90 x 4 = 360 (cm2)