Giá trị nhỏ nhất của biểu thức Q=a2+4b2-10a là
Kết quả thôi nhé mn ^^ nhanh mình tick
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có : |x+5|>=0
=> |x+5|+11>=11
=> A>=11
=> GTNN của A là 11 tại |x+5|=0
=>x+5=0
x=0-5
x=-5
Vậy GTNN của A là 11 tại x=-5
nếu muốn A là GTNN thì -/x/+3=1 nên -/x/=1-3=-2 nên x=2
Vậy khi đó GTNN của A sẽ =-9
duyệt đi olm
-/x/ </ 0 với mọi x
=>-/x/+3 </ 3 với mọi x
=>A >/ -9/3=-3
=>Amin=-3
<=>x=0
\(Q=a^2+4b^2+10a=a^2+2.a.5+25-25+\left(2b\right)^2=\left(a+5\right)^2+\left(2b\right)^2+\left(-25\right)\)
\(\left(a+5\right)^2\ge0;\left(2b\right)^2\ge0=>\left(a+5\right)^2+\left(2b\right)^2\ge0=>\left(a+5\right)^2+\left(2b\right)^2+\left(-25\right)\ge0\)
Vậy GTNN của Q là - 25. Dấu "=" xảy ra khi a + 5 = 0 => a = -5 và 2b = 0 => b = 0
\(Q=a^2-10a+25-25+4b^2\)
\(Q=\left(a^2-2.5.a+5^2\right)+4b^2-25=\left(a-5\right)^2+4b^2-25\)
\(Q\ge-25\) đẳng thức khi \(\hept{\begin{cases}a=5\\b=0\end{cases}}\)
Q=a2+4b2-10a
=a2-10a+25-25+4b2
=(a-5)2+4b2-25
\(\Rightarrow\left(a-5\right)^2+4b^2\ge0\) voi moi a
\(\Leftrightarrow\left(a-5\right)^2+4b^2\ge-25\)
Vay GTNN la -25
Dau "=" xay ra khi : a-5=0 \(\Rightarrow\)a=5
4b=0 \(\Rightarrow\)b=0
a2 + 4b2 - 10a = (a2 - 10a + 25) + 4b2 - 25
= (a - 5)2 + 4b2 - 25\(\ge25\)
Sai rồi cái này nhỏ nhất phải là -25 chứ