K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 8 2020

quy đồng mẫu thức ta được

\(\frac{yz\left(z-y\right)+xz\left(x-z\right)+xy\left(y-x\right)}{xyz\left(x-y\right)\left(y-z\right)\left(z-x\right)}\)\(=\frac{yz\left(z-y\right)+xz\left(x-z\right)-xy\left[\left(z-y\right)+\left(x-z\right)\right]}{xyz\left(x-y\right)\left(y-z\right)\left(z-x\right)}\)

\(=\frac{y\left(z-y\right)\left(z-x\right)+x\left(x-z\right)\left(z-y\right)}{xyz\left(x-y\right)\left(y-z\right)\left(z-x\right)}=\frac{\left(z-y\right)\left(z-x\right)\left(y-x\right)}{xyz\left(z-y\right)\left(z-x\right)\left(y-x\right)}=\frac{1}{xyz}\)

29 tháng 11 2016

Phân tích mẫu thức thành nhân tử

3 tháng 11 2016

ai học giỏi giải giùm mình với!

3 tháng 11 2016
Đáp số là x+ y + z
19 tháng 10 2017

Xem lại cái đề đi Tuyển. Hình như giá trị nhỏ nhất của cái biểu thức dưới còn lớn hơn là 1 thì làm sao bài đó có giá trị x, y, z thỏa được mà bảo tính A.

7 tháng 3 2020

P=\(\frac{x}{\left(x-y\right)\left(x-z\right)}+\frac{y}{\left(y-x\right)\left(y-z\right)}+\frac{z}{\left(z-y\right)\left(z-x\right)}\) =\(\frac{x}{\left(x-y\right)\left(x-z\right)}-\frac{y}{\left(x-y\right)\left(y-z\right)}+\frac{z}{\left(y-z\right)\left(x-z\right)}\) =\(\frac{x\left(y-z\right)-y\left(x-z\right)+z\left(x-y\right)}{\left(x-y\right)\left(y-z\right)\left(x-z\right)}\) =\(\frac{xy-xz-xy+yz+xz-yz}{\left(x-y\right)\left(y-z\right)\left(x-z\right)}\) =0

25 tháng 1 2017

Ta có: \(\frac{x^2-yz}{\left(x+y\right)\left(x+z\right)}=\frac{x^2+xy-xy-yz}{\left(x+y\right)\left(x+z\right)}\)

\(=\frac{x\left(x+y\right)-y\left(x+z\right)}{\left(x+y\right)\left(x+z\right)}\)

\(=\frac{x}{x+z}-\frac{y}{x+y}\)

Tương tự: \(\frac{y^2-xz}{\left(x+y\right)\left(y+z\right)}=\frac{y}{y+z}-\frac{y}{x+y}\)

\(\frac{z^2-xz}{\left(x+z\right)\left(y+z\right)}=\frac{z}{y+z}-\frac{x}{x+z}\)

Do đó: \(A=\frac{x}{x+z}-\frac{y}{x+y}+\frac{y}{y+z}-\frac{x}{x+y}+\frac{z}{y+z}-\frac{x}{x+z}=0\)