K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: góc AEB=góc AHB=90 độ

=>ABHE nội tiếp

b: góc HED=góc ABC=1/2*sđ cung AC=góc ADC

=>HE//CD

a: góc AEB=góc AHB=90 độ

=>AEHB nội tiếp

góc AGD=1/2*180=90 độ

=>GD vuông góc AH

=>GD//BC

b: ABHE nội tiếp

=>góc EHC=góc BAD

mà góc BAD=góc DCB

nên góc EHC=góc DCB

=>EH//CD

góc ACD=1/2*180=90 độ

=>AC vuông góc CD

=>EH vuông góc AC tại N

=>góc ANH=90 độ

a: Vì góc AEB=góc AHB=90 độ

=>AHBE nội tiếp

góc AGD=1/2*180=90 độ

=>AG vuông góc GD

=>GD//BC

b:

Xét ΔAHB vuông tại H và ΔACD vuông tạiC có

góc ABH=góc ADC

=>ΔAHB đồng dạng với ΔACD

=>góc BAH=góc DAC

góc NAH+góc NHA

=góc ABE+góc BAE=90 độ

=>ΔAHN vuông tại N

9 tháng 3 2023

giúp câu c nha mn

 


vì Đường tròn (O;R) có đường kính BC cắt AB, AC lần lượt là F và E => góc HEA = góc HFA = 90o
mà hai góc này là hai góc đối nhau=> tứ giác AFHE nội tiếp

Sửa đề: BF và CE cắt nhau tại H

a) Xét (O) có 

ΔBEC nội tiếp đường tròn(B,E,C\(\in\)(O))

BC là đường kính(gt)

Do đó: ΔBEC vuông tại E(Định lí)

\(\Leftrightarrow CE\perp BE\)

\(\Leftrightarrow CE\perp AB\)

\(\Leftrightarrow\widehat{AEC}=90^0\)

hay \(\widehat{AEH}=90^0\)

Xét (O) có 

ΔBFC nội tiếp đường tròn(B,F,C\(\in\)(O))

BC là đường kính(gt)

Do đó: ΔBFC vuông tại F(Định lí)

\(\Leftrightarrow BF\perp CF\)

\(\Leftrightarrow BF\perp AC\)

\(\Leftrightarrow\widehat{AFB}=90^0\)

hay \(\widehat{AFH}=90^0\)

Xét tứ giác AEHF có 

\(\widehat{AEH}\) và \(\widehat{AFH}\) là hai góc đối

\(\widehat{AEH}+\widehat{AFH}=180^0\left(90^0+90^0=180^0\right)\)

Do đó: AEHF là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

Xét ΔABC có 

BF là đường cao ứng với cạnh AC(cmt)

CE là đường cao ứng với cạnh AB(cmt)

BF cắt CE tại H(gt)

Do đó: H là trực tâm của ΔABC(Định lí ba đường cao của tam giác)

\(\Leftrightarrow AH\perp BC\)

hay \(AD\perp BC\)(đpcm)