K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 11 2016

x- y/3=x+ y/13 =>x-x=y/3+y/13 => 0=y/3+ y/13 => y/-3=y/13

=> y=0 => x bằng tất cả mọi số  

28 tháng 9 2016

Ta có: \(\frac{x-y}{3}=\frac{x+y}{13}\)

=> (x - y).13 = 3.(x + y)

=> 13x - 13y = 3x + 3y

=> 13x - 3x = 3y + 13y

=> 10x = 16y

=> \(x=\frac{16}{10}y=\frac{8}{5}y\)

Thay \(x=\frac{8}{5}y\) vào đề bài ta có: \(\frac{\frac{8}{5}y-y}{3}=\frac{\frac{8}{5}y+y}{13}=\frac{\frac{8}{5}y.y}{200}\)

\(\Rightarrow\frac{\frac{3}{5}y}{3}=\frac{\frac{13}{5}y}{13}=\frac{\frac{8}{5}y^2}{200}\)

\(\Rightarrow\frac{3}{5}y.\frac{1}{3}=\frac{13}{5}y.\frac{1}{13}=\frac{8}{5}y^2.\frac{1}{200}\)

\(\Rightarrow\frac{1}{5}y=\frac{1}{125}.y^2\)

\(\Rightarrow\frac{1}{5}y-\frac{1}{125}.y^2=0\)

\(\Rightarrow\frac{1}{5}y.\left(1-\frac{1}{25}y\right)=0\)

\(\Rightarrow\left[\begin{array}{nghiempt}y=0\\1-\frac{1}{25}y=0\end{array}\right.\)\(\Rightarrow\left[\begin{array}{nghiempt}y=0\\\frac{1}{25}y=1\end{array}\right.\)\(\Rightarrow\left[\begin{array}{nghiempt}y=0\\y=25\end{array}\right.\)

+ Với y = 0 thì \(x=\frac{8}{5}.0=0\)

+ Với y = 25 thì \(x=\frac{8}{5}.25=40\)

Vậy \(\begin{cases}x=0\\y=0\end{cases}\)\(\begin{cases}x=40\\y=25\end{cases}\)

28 tháng 9 2016

\(\frac{x-y}{3}=\frac{x+y}{13}=\frac{x-y+x+y}{3+13}=\frac{2x}{16}=\frac{x}{8}=\frac{25x}{200}=\frac{xy}{200}\)

Vì 25x = xy nên y = 25

\(\frac{x-y}{3}=\frac{x+y}{13}=\frac{x-y-x-y}{3-13}=\frac{-2y}{-10}=\frac{y}{5}\)

=> \(\frac{y}{5}=\frac{x}{8}\Rightarrow8y=5x\Rightarrow\frac{x}{y}=\frac{8}{5}\)

=> x = 40 

Vậy...

3 tháng 11 2019

Ta có:

\(x^2+y^2=1\Rightarrow\left(x^2+y^2\right)^2=1\)(1)

Thay (1) vào \(\frac{x^4}{a}+\frac{y^4}{b}=\frac{1}{a+b}\)ta có:

\(\frac{x^4}{a}+\frac{y^4}{b}=\frac{\left(x^2+y^2\right)^2}{a+b}\Leftrightarrow\frac{x^4b+y^4a}{ab}=\frac{x^4+2x^2y^2+y^4}{a+b}\)

\(\Leftrightarrow\left(x^4b+y^4a\right)\left(a+b\right)=\left(x^4+2x^2y^2+y^4\right).ab\)

\(\Leftrightarrow x^4ab+x^4b^2+y^4a^2+y^4ab=x^4ab+2x^2y^2ab+y^4ab\)

\(\Leftrightarrow x^4b^2+y^4a^2=2x^2y^2ab\)

\(\Leftrightarrow\left(x^2b\right)^2-2x^2y^2ab+\left(y^2a\right)^2=0\)

\(\Leftrightarrow\left(x^2b-y^2a\right)^2=0\)

\(\Leftrightarrow x^2b-y^2a=0\)

\(\Leftrightarrow x^2b=y^2a\)

\(\Rightarrow\frac{x^2}{a}=\frac{y^2}{b}=\frac{x^2+y^2}{a+b}=\frac{1}{a+b}\)

\(\Rightarrow\left(\frac{x^2}{a}\right)^{1002}=\left(\frac{y^2}{b}\right)^{1002}=\left(\frac{1}{a+b}\right)^{1002}\)

\(\Rightarrow\frac{x^{2004}}{a^{1002}}=\frac{y^{2004}}{b^{1002}}=\frac{1}{\left(a+b\right)^{1002}}\)

\(\Rightarrow\frac{x^{2004}}{a^{1002}}+\frac{y^{2004}}{b^{1002}}=\frac{1}{\left(a+b\right)^{1002}}+\frac{1}{\left(a+b\right)^{1002}}=\frac{2}{\left(a+b\right)^{1002}}\left(đpcm\right)\)

Chúc bạn học tốt!

13 tháng 3 2016

b, \(3x=2y\Rightarrow\frac{x}{2}=\frac{y}{3}\)

\(7y=5z\Rightarrow\frac{y}{5}=\frac{z}{7}\)

\(\frac{x}{2}=\frac{y}{3};\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)

áp dụng dãy tỉ số bằng nhau :

\(\frac{x-y+z}{10-15+21}=\frac{32}{16}=2\)

x = 2 . 10 = 20

y = 2 . 15 = 30

z = 2 . 21 = 42 

Vậy : ..... 

13 tháng 3 2016

a, \(\frac{x}{3}=\frac{y}{4};\frac{y}{5}=\frac{z}{7}\)

MSC của y là : 20

Có: \(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\)

Áp dụng dãy tỉ số bằng nhau, ta có: 

\(2x+3y-z=186\)

\(\Rightarrow2.15+3.20-28=30+60-28=62\)

\(\frac{186}{62}=3\)

 x = 3 . 15 = 45

 y = 3 . 20 = 60

 z = 3 . 28 = 84

Vậy: .....