giải phương trình sau:
\(x^2+x+3=3\sqrt{x^3+1}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(ĐK:x\ge2\\ PT\Leftrightarrow\sqrt{\left(x-1\right)\left(x-2\right)}+3=3\sqrt{x-1}+\sqrt{x-2}\)
Đặt \(\left\{{}\begin{matrix}\sqrt{x-1}=a\\\sqrt{x-2}=b\end{matrix}\right.\left(a,b\ge0\right)\)
\(PT\Leftrightarrow ab+3=3a+b\\ \Leftrightarrow3a-3+b-ab=0\\ \Leftrightarrow3\left(a-1\right)-b\left(a-1\right)=0\\ \Leftrightarrow\left(3-b\right)\left(a-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}a=1\Rightarrow x-1=1\Rightarrow x=2\left(tm\right)\\b=3\Rightarrow x-2=9\Rightarrow x=11\left(tm\right)\end{matrix}\right.\)
Vậy \(x\in\left\{2;11\right\}\)
\(ĐK:x\ge-1\)
Đặt \(\left\{{}\begin{matrix}\sqrt{x+1}=a\\\sqrt{x^2-x+1}=b\end{matrix}\right.\left(a,b\ge0\right)\)
\(PT\Leftrightarrow b^2-1+2ab=2a\\ \Leftrightarrow2ab-2a+b^2-1=0\\ \Leftrightarrow2a\left(b-1\right)+\left(b-1\right)\left(b+1\right)=0\\ \Leftrightarrow\left(2a+b+1\right)\left(b-1\right)=0\\ \Leftrightarrow b-1=0\left(2a+b+1>0\right)\\ \Leftrightarrow b=1\\ \Leftrightarrow x^2-x+1=1\\ \Leftrightarrow x\left(x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\left(tm\right)\\x=1\left(tm\right)\end{matrix}\right.\)
\(1,\sqrt{x+2+4\sqrt{x-2}}=5\left(x\ge2\right)\\ \Leftrightarrow\sqrt{\left(\sqrt{x-2}+4\right)^2}=5\\ \Leftrightarrow\sqrt{x-2}+4=5\\ \Leftrightarrow\sqrt{x-2}=1\\ \Leftrightarrow x-2=1\Leftrightarrow x=3\\ 2,\sqrt{x+3+4\sqrt{x-1}}=2\left(x\ge1\right)\\ \Leftrightarrow\sqrt{\left(\sqrt{x-1}+4\right)^2}=2\\ \Leftrightarrow\sqrt{x-1}+4=2\\ \Leftrightarrow\sqrt{x-1}=-2\\ \Leftrightarrow x\in\varnothing\left(\sqrt{x-1}\ge0\right)\)
\(3,\sqrt{x+\sqrt{2x-1}}=\sqrt{2}\left(x\ge\dfrac{1}{2};x\ne1\right)\\ \Leftrightarrow x+\sqrt{2x-1}=2\\ \Leftrightarrow x-2=-\sqrt{2x-1}\\ \Leftrightarrow x^2-4x+4=2x-1\\ \Leftrightarrow x^2-6x+5=0\\ \Leftrightarrow\left(x-5\right)\left(x-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=5\left(tm\right)\\x=1\left(loại\right)\end{matrix}\right.\)
\(4,\sqrt{x-2+\sqrt{2x-5}}=3\sqrt{2}\left(x\ge\dfrac{5}{2}\right)\\ \Leftrightarrow\sqrt{2x-4+2\sqrt{2x-5}}=6\\ \Leftrightarrow\sqrt{\left(\sqrt{2x-5}+1\right)^2}=6\\ \Leftrightarrow\sqrt{2x-5}+1=6\\ \Leftrightarrow\sqrt{2x-5}=5\\ \Leftrightarrow2x-5=25\Leftrightarrow x=15\left(TM\right)\)
Thấy : \(x^2-4x+16=\left(x-2\right)^2+12>0\forall x\)
P/t \(\Leftrightarrow2\left(x^2-4x+16\right)-36+\sqrt{x^2-4x+16}=0\)
Đặt \(t=\sqrt{x^2-4x+16}>0\) ; khi đó :
\(2t^2+t-36=0\) \(\Leftrightarrow\left[{}\begin{matrix}t=4\\t=-\dfrac{9}{2}\left(L\right)\end{matrix}\right.\)
Với t = 4 hay \(\sqrt{x^2-4x+16}=4\Leftrightarrow x^2-4x=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)
Vậy ...
ĐKXĐ: \(x\le1\)
+) Xét \(x=0\) thỏa mãn.
+) Xét \(x\ne0\):
Nhân cả 2 vế của phương trình với \(\left(1+\sqrt{1-x}\right)\) ta được:
\(\left(1-\sqrt{1-x}\right)\left(1+\sqrt{1-x}\right)\sqrt[3]{2-x}=x\left(1+\sqrt{1-x}\right)\)
\(\Leftrightarrow x\sqrt[3]{2-x}=x\left(1+\sqrt{1-x}\right)\)
\(\Leftrightarrow\sqrt[3]{2-x}=1+\sqrt{1-x}\)
Đặt \(\sqrt{1-x}=a\left(a\ge0\right)\), khi đó \(2-x=a^2+1\)
\(pt\Leftrightarrow\sqrt[3]{a^2+1}=1+a\)
\(\Leftrightarrow a^2+1=\left(a+1\right)^3=a^3+3a^2+3a+1\)
\(\Leftrightarrow a^3+2a^2+3a=0\)
\(\Leftrightarrow a\left(a^2+2a+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=0\left(C\right)\\\left(a+1\right)^2+2=0\left(L\right)\end{matrix}\right.\)
\(\Leftrightarrow\sqrt{1-x}=0\)
\(\Leftrightarrow x=1\) ( thỏa mãn )
Vậy tập nghiệm của phương trình là \(x=\left\{0;1\right\}\)
Lại bị lỗi công thức :((
Nhân cả hai vế của phương trình với \(1+\sqrt{1-x}\) ta được:
\(\left(1-\sqrt{1-x}\right)\left(1+\sqrt{1-x}\right)\sqrt[3]{2-x}=x\left(1+\sqrt{1-x}\right)\)
\(\Leftrightarrow x\sqrt[3]{2-x}=x\left(1+\sqrt{1-x}\right)\)
\(\Leftrightarrow\sqrt[3]{2-x}=1+\sqrt{1-x}\)
ĐKXĐ: `x-1 >0 <=>x>1`
`(x^2-4x+3)/(sqrt(x-1))=sqrt(x-1)`
`<=>x^2-4x+3=x-1`
`<=>x^2-5x+4=0`
`<=>x^2-x-4x+4=0`
`<=>x(x-1)-4(x-1)=0`
`<=>(x-4)(x-1)=0`
`<=> [(x=4\ (TM)),(x=1\ (KTM)):}`
``
Vậy `S={4}`.
\(a,PT\Leftrightarrow x\sqrt{3}=x+2\\ \Leftrightarrow3x^2=x^2+4x+4\\ \Leftrightarrow2x^2-4x-4=0\Leftrightarrow x^2-2x-2=0\\ \Delta=4+8=12\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2-2\sqrt{3}}{2}=1-\sqrt{3}\\x=\dfrac{2+2\sqrt{3}}{2}=1+\sqrt{3}\end{matrix}\right.\)
\(b,ĐK:x\ge\dfrac{2}{3}\\ PT\Leftrightarrow3x-2=7-4\sqrt{3}\\ \Leftrightarrow3x=9-4\sqrt{3}\\ \Leftrightarrow x=\dfrac{9-4\sqrt{3}}{3}\left(tm\right)\)
\(c,ĐK:x\ge-1\\ PT\Leftrightarrow\left(x+1-4\sqrt{x+1}+4\right)+\left(x^2-6x+9\right)=0\\ \Leftrightarrow\left(\sqrt{x+1}-2\right)^2+\left(x-3\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}\sqrt{x+1}=2\\x-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+1=4\\x=3\end{matrix}\right.\Leftrightarrow x=3\left(tm\right)\)
Điều kiện \(x\ge-1\)
pt đã cho \(\Leftrightarrow x^2+x=3\left(\sqrt{x^3+1}-1\right)\) (1)
Vì \(\sqrt{x^3+1}+1\ne0\) với mọi \(x\ge-1\) nên ta có thể viết lại pt (1) như sau:
\(\left(1\right)\Leftrightarrow x^2+x=3.\dfrac{\left(\sqrt{x^3+1}-1\right)\left(\sqrt{x^3+1}+1\right)}{\sqrt{x^3+1}+1}\)
\(\Leftrightarrow x^2+x=3.\dfrac{\left(\sqrt{x^3+1}\right)^2-1}{\sqrt{x^3+1}+1}\)
\(\Leftrightarrow x^2+x=3.\dfrac{x^3}{\sqrt{x^3+1}+1}\)
\(\Leftrightarrow x\left(x+1-\dfrac{x^2}{\sqrt{x^3+1}+1}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(nhận\right)\\x+1-\dfrac{x^2}{\sqrt{x^3+1}+1}=0\left(\cdot\right)\end{matrix}\right.\)
Xin lỗi bạn nhưng mình chỉ làm được đến đó thôi. Tìm được \(x=0\) rồi. Còn \(\left(\cdot\right)\) thì mình chưa giải được.
Chỗ kia mình nhầm xíu. \(\left(\cdot\right)\) phải là \(x+1=\dfrac{3x^2}{\sqrt{x^3+1}+1}\)