tìm x,y thuộc Z,sao cho:xy+x+y=6
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\displaystyle \begin{array}{{>{\displaystyle}l}} xy-5x+y=11\ \Leftrightarrow \ y( x+1) -5( x+1) =6\\ \Leftrightarrow \ ( x+1)( y-5) =6\\ Do\ x,y\ \in Z\ nên\ ta\ có:\\ \begin{array}{|c|c|c|c|c|c|c|c|c|} \hline x+1 & \ \ \ 1\ \ \ & \ \ -1\ \ & \ \ \ 6\ \ \ & \ \ -6\ \ & \ \ \ 2\ \ \ & \ \ -2\ \ & \ \ \ 3\ \ \ & \ \ -3\ \ \\ \hline y-5 & \ 6 & -6 & \ 1 & \ \ -1 & 3 & -3 & 2 & -2\\ \hline x & 0 & -2 & 5 & -7 & 1 & -3 & 2 & -4\\ \hline y & 11 & -1 & 6 & 4 & 8 & 2 & 7 & 3\\ \hline \end{array} \ \ \ \\ Thử\ lại\ thấy\ các\ cặp\ giá\ trị\ ( x;y) \ trên\ đều\ thỏa\ mãn\\ Vậy\ ( x;y) \in \{( 0;11) ;( -2;-1) ;( 5;6) ;( -7;4) ;( 1;8) ;( -3;2) ;( 2;7) ;( -4;3)\} \ \end{array}\)
Ta có: xy - 5x + y = 17
=> x(y - 5) + (y - 5) = 12
=> (x + 1)(y - 5) = 12
=> x + 1; y - 5 \(\in\)Ư(12) = {1; 2; 3; 4; 6; 12}
Lập bảng :
x + 1 | 1 | 2 | 3 | 4 | 6 | 12 |
y - 5 | 12 | 6 | 4 | 3 | 2 | 1 |
x | 0 | 1 | 2 | 3 | 5 | 11 |
y | 17 | 11 | 9 | 8 | 7 | 6 |
Vậy ...
\(xy+2x-5y=13\\ \Rightarrow x\left(y+2\right)-5y-10=3\\ \Rightarrow x\left(y+2\right)-5\left(y+2\right)=3\\ \Rightarrow\left(x-5\right)\left(y+2\right)=3=3\cdot1=\left(-3\right)\left(-1\right)\)
\(x-5\) | 3 | 1 | -3 | -1 |
\(y+2\) | 1 | 3 | -1 | -3 |
\(x\) | 8 | 6 | 2 | 4 |
\(y\) | -1 | 1 | -3 | -5 |
Vậy \(\left(x;y\right)=\left(8;-1\right);\left(6;1\right);\left(2;-3\right);\left(4;-5\right)\)
cộng ba vế lại được :
( x + y ) + ( y - z ) + ( z - x ) = ( -8 ) + 4 + ( -6 )
x + y + y - z + z - x = -10
2y = -10
\(\Rightarrow\)y = ( -10 ) : 2 = -5
Thay y = -5 vào x + y = -8 được : x + ( -5 ) = -8
\(\Rightarrow\)x = ( -8 ) - ( -5 ) = ( -3 )
Thay y = -5 vào y - z = 4 ta được : ( -5 ) - z = 4
\(\Rightarrow\)z = -5 - 4 = -9
Vậy y = -5 ; x = -3 ; z = -9
6 \(n^5+5n=n^5-n+6n=n\left(n^4-1\right)+6n=n\left(n^2-1\right)\left(n^2+1\right)+6n\)
\(=n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)+6n\)
vì n,n-1 là 2 số nguyên lien tiếp \(\Rightarrow n\left(n-1\right)⋮2\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)⋮2\)
n,n-1,n+1 là 3 sô nguyên liên tiếp \(\Rightarrow n\left(n-1\right)\left(n+1\right)⋮3\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)⋮3\)
\(\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)⋮2\cdot3=6\)
\(6⋮6\Rightarrow6n⋮6\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)-6n⋮6\Rightarrow n^5+5n⋮6\)(đpcm)
7 \(n\left(2n+7\right)\left(7n+1\right)=n\left(2n+7\right)\left(7n+7-6\right)=7n\left(n+1\right)\left(2n+7\right)-6n\left(2n+7\right)\)
\(=7n\left(n+1\right)\left(2n+4+3\right)-6n\left(2n+7\right)\)
\(=7n\left(n+1\right)\left(2n+4\right)+21n\left(n+1\right)-6n\left(2n+7\right)\)
\(=14n\left(n+1\right)\left(n+2\right)+21n\left(n+1\right)-6n\left(2n+7\right)\)
n,n+1,n+2 là 3 sô nguyên liên tiếp dựa vào bài 6 \(\Rightarrow n\left(n+1\right)\left(n+2\right)⋮6\Rightarrow14n\left(n+1\right)\left(n+2\right)⋮6\)
\(21⋮3;n\left(n+1\right)⋮2\Rightarrow21n\left(n+1\right)⋮3\cdot2=6\)
\(6⋮6\Rightarrow6n\left(2n+7\right)⋮6\)
\(\Rightarrow14n\left(n+1\right)\left(n+2\right)+21n\left(n+1\right)-6n\left(2n+7\right)⋮6\)
\(\Rightarrow n\left(2n+7\right)\left(7n+1\right)⋮6\)(đpcm)
......................?
mik ko biết
mong bn thông cảm
nha ................