Chứng minh rằng chỉ có duy nhất 1 bộ 3 số nguyên tố mà hiệu của hai số liên tiếp =4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử p ; p+4 ; p+8 là ba số nguyên tố.
Ta thấy p \(\ne\) 2, vì nếu p = 2 thì p + 4 = 6 và p+ 8 = 10 là hợp số.
Xét p = 3 thì 3; 17; 11 là bộ ba số nguyên tố mà hiệu của ba số liên tiếp bằng 4.
Xét p > 3 thì p có dạng 3k+1 hoặc 3k+2 (k \(\in\) N) [kiến thức về số nguyên tố lớn hơn 3]
Loại p = 3k + 1 vì khi đó p + 8 = 3k + 1 + 8 = 3k + 8 = 3k + 3.3 = 3.(k+3) chia hết cho 3, là hợp số.
Loại p = 3k + 2 vì khi đó p + 4 = 3k + 2 + 4 = 3k + 6 = 3k + 3.2 = 3.(k + 2) chia hết cho 3, là hợp số.
Vậy chỉ có duy nhất bộ ba số nguyên tố 3; 7; 11 thỏa mãn đề bài.
Suy ra điều phải chứng minh.
Bạn hỏi câu này, mọi người và O-l-M chọn câu trả lời của mình đi mà để mình còn có hứng giải tiếp !
gia su p ; p + 4 ; p + 8 la ba so nguyen to
ta thay p khong bang 2 vi neu p = 2 thi p + 4 = 6 va p + 8 = 10
xep p = 3 thi 3 ; 17 ; 11 la bo ba nguyen to lien tiep co hieu bang 4
xet p > 3 thi p co dang 3k + 1 hoac 3k + 2 (k thuoc N) [ kien thuc ve nguyen to lon hon 3]
loai p = 3k + 1 vi khi do p + 8 = 3k + 1 +8 = 3k + 8 = 3k + 3 . 3 = 3 . (k + 3) chia het cho 3, la hop so
loai p = 3k + 2 vi khi do p + 4 = 3k + 2 + 4 = 3k + 6 = 3k + 3 . 2 = 3 . (k + 2) chia het cho 3, la hop so
vay chi co duy nhat 3; 7; 11 thoa man de bai
suy ra day la dieu can chung minh
ta thay p