K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 4 2021

a/ Xét \(\Delta ABC\) và \(\Delta HAC\) có :

\(\left\{{}\begin{matrix}\widehat{C}chung\\\widehat{BAC}=\widehat{AHC}=90^0\end{matrix}\right.\)

\(\Leftrightarrow\Delta ABC\sim HAC\left(g-g\right)\)

b/ \(BC=\sqrt{AB^2+AC^2}=10cm\)

\(AH.BC=AB.AC\Leftrightarrow AH=\dfrac{AB.AC}{BC}=4,8cm\)

c/ \(\Delta HEA\sim\Delta CEH\left(g-g\right)\)

\(\Leftrightarrow\dfrac{HE}{CE}=\dfrac{EA}{HE}\Leftrightarrow HE^2=EA.EC\left(đpcm\right)\)

 

16 tháng 4 2021

a) Xét ΔHAC và ΔABC có:

∠(ACH ) là góc chung

∠(BAC)= ∠(AHC) = 90o

⇒ ΔHAC ∼ ΔABC (g.g)

b) Xét ΔHAD và ΔBAH có:

∠(DAH ) là góc chung

∠(ADH) = ∠(AHB) = 90o

⇒ ΔHAD ∼ ΔBAH (g.g)

c) Tứ giác ADHE có 3 góc vuông ⇒ ADHE là hình chữ nhật.

⇒ ΔADH= ΔAEH ( c.c.c) ⇒ ∠(DHA)= ∠(DEA)

Mặt khác: ΔHAD ∼ ΔBAH ⇒ ∠(DHA)= ∠(BAH)

∠(DEA)= ∠(BAH)

Xét ΔEAD và ΔBAC có:

∠(DEA)= ∠(BAH)

∠(DAE ) là góc chung

ΔEAD ∼ ΔBAC (g.g)

d) ΔEAD ∼ ΔBAC

ΔABC vuông tại A, theo định lí Pytago:

Theo b, ta có:

 

 

 

 

 

 

 

 

 

2 tháng 2 2021

Sau gần một buổi trưa lăn lội với Thales, đồng dạng ở câu b thì t đã nghĩ đến cách của lớp 7 ~ ai dè làm được ^^undefined

2 tháng 2 2021

vaidaibangioithe))):

2 tháng 2 2021

Bổ sung hình vẽ

4 tháng 4 2023

Cậu ơi, cậu hk lm câu c cho tớ hả :3?

a: Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=6^2+8^2=100\)

hay BC=10cm

Áp dụng hệ thức lượng trong tam giác vuông ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\left\{{}\begin{matrix}AB\cdot AC=AH\cdot BC\\AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AH=4.8\left(cm\right)\\BH=3.6\left(cm\right)\\CH=6.4\left(cm\right)\end{matrix}\right.\)

b: 

Áp dụng hệ thức lượng trong tam giác vuông ΔAHC vuông tại H có HE là đường cao ứng với cạnh huyền AC, ta được:

\(AE\cdot AC=AH^2\left(1\right)\)

Áp dụng hệ thức lượng trong tam giác vuông ΔABH vuông tại A có HD là đường cao ứng với cạnh huyền BA, ta được:

\(AD\cdot AB=AH^2\left(2\right)\)

Từ \(\left(1\right),\left(2\right)\) suy ra \(AE\cdot AC=AD\cdot AB\)

hay \(\dfrac{AE}{AB}=\dfrac{AD}{AC}\)

Xét ΔAED vuông tại A và ΔABC vuông tại A có 

\(\dfrac{AE}{AB}=\dfrac{AD}{AC}\)

Do đó: ΔAED\(\sim\)ΔABC

8 tháng 3 2018

B A E H K C

a) Xét \(\Delta ABE,\Delta HBE\) có :

\(\widehat{BAE}=\widehat{BHE}\left(=90^{^O}\right)\)

\(BE:Chung\)

\(\widehat{ABE}=\widehat{HBE}\) (BE là tia phân giác của \(\widehat{B}\))

=> \(\Delta ABE=\Delta HBE\) (cạnh huyền - góc nhọn)

=> \(\left\{{}\begin{matrix}AE=HE\left(\text{2 cạnh tương ứng}\right)\\AB=BH\left(\text{2 cạnh tương ứng}\right)\end{matrix}\right.\)

b) Xét \(\Delta AEK,\Delta HEC\) có :

\(\widehat{AEK}=\widehat{HEC}\) (đối đỉnh)

\(AE=HE\left(cmt\right)\)

\(\widehat{KAE}=\widehat{CHE}\left(=90^o\right)\)

=> \(\Delta AEK=\Delta HEC\) (g.c.g)

=> \(AK=HC\) (2 cạnh tương ứng)

Ta có : \(\left\{{}\begin{matrix}AB=AC\left(\text{Tam giác ABC cân tại A}\right)\\AK=HC\left(cmt\right)\end{matrix}\right.\)

Lại có : \(\left\{{}\begin{matrix}BK=AB+AK\\BC=BH+HC\end{matrix}\right.\)

Nên : \(AB+AK=BH+HC\)

\(\Leftrightarrow BK=BC\)

=> \(\Delta BCK\) cân tại B.

c) Ta có : \(BK=BC=10cm\)

Xét \(\Delta ABC\perp A\) có :

\(AC^2=BC^2-AB^2\) (định lí PYTAGO)

=> \(AC^2=10^2-6^2=64\)

=> \(AC=\sqrt{64}=8\left(cm\right)\)

18 tháng 2 2017

bn tham khảo ở đây nha:http://text.123doc.org/document/658748-6-bai-toan-hinh-4-de-thi-ki-i-toan-8.htm