Một hội nghị học sinh giỏi có 100 người tham gia mỗi người đều quen ít nhất 50 người khác .
CMR ta có thể chọn được 4 học sinh xếp vòng quanh 1 bàn tròn sao cho bất cứ 2 người nào ngồi cạnh nhau cũng quen nhau.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn A là một học sinh trong hội nghị mời vào bàn. A có 50 người quen.
Chọn B và C là hai bạn không quen nhau trong nhóm này.
Nếu không thể chọn được B và C thì tất cả 50 người trong nhóm quen A đều quen nhau. Khi đó có thể lấy ba bạn bất kỳ xếp vào bàn với A, thỏa mãn điều kiện bài toán.
Trường hợp chọn được B và C, khi đó hội nghị có A, B quen A, C quen A ngồi ở bàn và 97 người khác. B còn 49 người quen khác A, C còn 49 người quen khác A, tổng cộng là 98>97. Như vậy B và C ít nhất có 1 người quen chung. Chọn D là một trong số người quen chung của B và C mời vào bàn. Ta có A,B,D,C thỏa mãn điều kiện bài toán.
Em tham khảo bài tương tự tại đây nhé:
Câu hỏi của Nguyễn Lê Hoàng - Toán lớp 5 - Học toán với OnlineMath
Em tham khảo tại đây nhé:
Câu hỏi của Nguyễn Lê Hoàng - Toán lớp 5 - Học toán với OnlineMath
bạn cung song ngư hả.kb vs mik nha
mày đặt câu hỏi thế thì mày về mà hỏi bố mày chưa chắc đã trả lời đc