\(\frac{4}{1\times3}+\frac{4}{3\times5}+\frac{4}{5\times7}+...+\frac{4}{11\times13}=?\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a)\frac{3^{10}.\left(-5\right)^{21}}{\left(-5\right)^{20}.3^{12}}=\frac{-5}{3^2}=\frac{-5}{9}\)
\(b)\frac{-11.13^7}{11^5.13^8}=\frac{-1}{11^4.13}\) (Bạn xem thử xem có sai đề không nhé)
\(c)\frac{2^{10}.3^{10}-2^{10}.3^9}{2^9.3^{10}}=\frac{2^{10}.3^9\left(3+1\right)}{2^9.3^{10}}=\frac{2.4}{3}=\frac{8}{3}\)
\(d)\frac{5^{11}.7^{12}+5^{11}.7^{11}}{5^{12}.7^{12}+9.5^{11}.7^{11}}=\frac{5^{11}.7^{11}\left(7+1\right)}{5^{11}.7^{11}\left(5.4+9\right)}=\frac{8}{20+9}=\frac{8}{29}\)
\(a)\frac{3^{10}\cdot\left(-5\right)^{21}}{\left(-5\right)^{20}\cdot3^{12}}=\frac{-5}{3^2}=\frac{-5}{9}\)
\(b)\frac{\left(-11\right)\cdot13^7}{11^5\cdot13^8}=\frac{-1}{11^4\cdot13}=\frac{-1}{14641\cdot13}=\frac{-1}{190333}\)
\(c)\frac{2^{10}\cdot3^{10}-2^{10}\cdot3^9}{2^9\cdot3^{10}}=\frac{2^{10}\left(3^{10}-3^9\right)}{2^9\cdot3^{10}}=\frac{2^{10}\cdot3^9\left(3-1\right)}{2^9\cdot3^{10}}=\frac{2^{10}\cdot3^9\cdot2}{2^9\cdot3^{10}}=\frac{2\cdot2}{3}=\frac{4}{3}\)
\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{8.9.10}=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}\right)+\frac{1}{2}.\left(\frac{1}{2.3}-\frac{1}{3.4}\right)+...+\frac{1}{2}.\left(\frac{1}{8.9}-\frac{1}{9.10}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{8.9}-\frac{1}{9.10}\right)\)
\(\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{9.10}\right)=\frac{1}{2}.\frac{22}{45}=\frac{11}{45}\)
(4/1*3+4/3*5+4/5*7+4/7*9)*10-x=0
=4*2/1*3+4*2/3*5+4*2/5*7+4*2/7*9
=1/1+1/3+1/5+1/7+1/9
=1/1-1/9
=8/9
8/9*10-x=0
89-x=0
x=89-0
x=89
\(\frac{4}{1.3}+\frac{4}{3.5}+\frac{4}{5.7}+...+\frac{4}{99.101}\)
\(=2.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\right)\)
\(=2.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\right)\)
\(=2.\left(1-\frac{1}{101}\right)\)
\(=2.\frac{100}{101}=\frac{200}{101}\)
Đặt \(A=\frac{4}{1.3}+\frac{4}{3.5}+\frac{4}{5.7}+..+\frac{4}{99.101}\)
\(A=2.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\right)\)
\(A=2.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\right)\)
\(A=2.\left(1-\frac{1}{101}\right)\)
\(A=\frac{2.100}{101}=\frac{200}{101}\)
Ủng hộ mk nha !!! ^_^
\(\frac{4}{1.3}+\frac{4}{3.5}+........+\frac{4}{2011.2013}\)
\(=2\left(\frac{2}{1.3}+\frac{2}{3.5}+........+\frac{2}{2011.2013}\right)\)
\(=2.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+........+\frac{1}{2011}-\frac{1}{2013}\right)\)
\(=2\left(1-\frac{1}{2013}\right)\)
\(=2.\frac{2012}{2013}\)
\(=\frac{4024}{2013}\)
\(\frac{1}{1x3x5}+\frac{1}{5x7x9}+\frac{1}{9x11x13}+.....+\frac{1}{49x51x53}=\)
\(1-\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}-\frac{1}{9}+.....+\frac{1}{49}-\frac{1}{51}-\frac{1}{53}=\)
\(1-\frac{1}{3}-\frac{1}{7}-....-\frac{1}{51}-\frac{1}{53}=\)
1/2.3+1/3.4+1/4.5+1/5.6+1/6.7+1/7.8+1/8.9+1/9.10
=1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+1/6+1/7-1/7+1/8-1/8+1/9+1/9-1/10
=1/2-1/10
=5/10-1/10
=4/10=2/5
\(\frac{1}{2x3}+\frac{1}{3x4}+\frac{1}{4x5}+\frac{1}{5x6}+\frac{1}{6x7}+\frac{1}{8x9}+\frac{1}{9x10}\)
\(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}\)
\(\frac{1}{2}-\frac{1}{10}\)
\(\frac{2}{5}\)
thế này :
= \(\frac{1}{2}\left(\frac{2}{3.5}+\frac{2}{5.7}+......+\frac{2}{11.13}\right)\)
= \(\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+....+\frac{1}{11}-\frac{1}{13}\right)\)
= \(\frac{1}{2}\left(\frac{1}{3}-\frac{1}{13}\right)\)
= \(\frac{1}{2}.\frac{10}{39}\)
= \(\frac{5}{39}\)
Vậy kq = \(\frac{5}{39}\)
đợi mjk giải nhé mjk đánh máy chậm
=\(2-\frac{2}{3}+\frac{2}{3}-\frac{2}{5}+\frac{2}{5}-\frac{2}{7}+....+\frac{2}{11}-\frac{2}{13}\)
=2-\(\frac{2}{13}\)=\(\frac{24}{13}\)