cho a,b,c là số thực khác 0 thỏa mãn: 1/a+1/2b+1/c=0
tính giá trị biể thức: P= bc/a^2+ac/8b^2+ab/c^2
ai giúp em với ạ, em đang cần gấp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Em tham khảo link:Câu hỏi của Conan Kudo - Toán lớp 8 - Học toán với OnlineMath
Ta có bổ đề
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)\(\Leftrightarrow\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{3}{abc}\)
ÁP DỤNG BỔ ĐỀ VÀO P ta có
\(P=\frac{bc}{a^2}+\frac{ca}{b^2}+\frac{ab}{c^2}=abc\left(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}\right)\)
\(=abc.\frac{3}{abc}=3\)
Vậy P=3
\(a,\dfrac{3}{a+b}=\dfrac{2}{b+c}=\dfrac{1}{c+a}\\ \Rightarrow\dfrac{a+b}{3}=\dfrac{b+c}{2}=\dfrac{c+a}{1}=\dfrac{2\left(a+b+c\right)}{6}=\dfrac{a+b+c}{3}\\ \Rightarrow\dfrac{a+b}{3}=\dfrac{a+b+c}{3}\\ \Rightarrow3\left(a+b+c\right)=3\left(a+b\right)\\ \Rightarrow3\left(a+b\right)+3c=3\left(a+b\right)\\ \Rightarrow3c=0\\ \Rightarrow c=0\)
Vậy \(P=\dfrac{a+b-2019c}{a+b+2018c}=\dfrac{a+b}{a+b}=1\)
Áp dụng : x + y + z = 0 suy ra x3 + y3 + z3 = 3xyz
1/a + 1/2b + 1/3c = 0 = >... rồi biến đổi nhé
Tham khảo: Câu hỏi của Nguyễn Thị Nhàn - Toán lớp 8 - Học toán với OnlineMath
Học tốt=)
tth : mẫu nó khác bạn nhé
- mẫu nó là 2bc 2ac 2ab
mẫu mk ko có nhân 2
Lời giải:
\(A=\frac{(bc)^3+(2ac)^3+(2ab)^3}{8a^2b^2c^2}=\frac{(bc)^3+(2ac+2ab)^3-3.2ac.2ab(2ac+2bc)}{8a^2b^2c^2}\)
\(=\frac{(bc)^3+(-bc)^3+12a^2b^2c^2}{8a^2b^2c^2}=\frac{12}{8}=1,5\)
\(\dfrac{1}{a}+\dfrac{1}{2b}+\dfrac{1}{c}=0\Rightarrow\dfrac{a+2b+c}{2abc}=0\Rightarrow2bc+ca+2ab=0\)
Ta có bổ đề: Nếu \(xyz\ne0\) và \(\left[{}\begin{matrix}x+y+z=0\\x=y=z\end{matrix}\right.\) thì:
\(x^3+y^3+z^3-3xyz=0\)
- Áp dụng: Đặt \(x=2bc;y=ca;z=2ab\)
\(\Rightarrow x+y+z=2bc+ca+2ab=0\)
\(\Rightarrow x^3+y^3+z^3-3xyz=0\)
Ta có:
\(P=\dfrac{bc}{a^2}+\dfrac{ca}{8b^2}+\dfrac{ab}{c^2}=\dfrac{8b^3c^3+c^3a^3+8a^3b^3}{8a^2b^2c^2}=\dfrac{x^3+y^3+z^3}{2xyz}=\dfrac{x^3+y^3+z^3+3xyz-3xyz}{2xyz}=\dfrac{0+3xyz}{2xyz}=\dfrac{3}{2}\)
:))))