Rút gọn :
a) \((2+\sqrt{3})\sqrt{7-4\sqrt{3}}\)
b) \(\sqrt{(1-\sqrt{2023})^2}\cdot\sqrt{2024+2\sqrt{2023}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A>\dfrac{1}{\sqrt{2}+\sqrt{3}}+\dfrac{1}{\sqrt{4}+\sqrt{5}}+\dfrac{1}{\sqrt{6}+\sqrt{7}}+...+\dfrac{1}{\sqrt{2024}+\sqrt{2025}}\)
\(\Rightarrow2A>\dfrac{1}{\sqrt{1}+\sqrt{2}}+\dfrac{1}{\sqrt{2}+\sqrt{3}}+\dfrac{1}{\sqrt{3}+\sqrt{4}}+\dfrac{1}{\sqrt{4}+\sqrt{5}}+...+\dfrac{1}{\sqrt{2024}+\sqrt{2025}}\)
\(\Rightarrow2A>\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+\sqrt{4}-\sqrt{3}+...+\sqrt{2025}-\sqrt{2024}\)
\(\Rightarrow2A>\sqrt{2025}-\sqrt{1}=44\)
\(\Rightarrow A>22\) (đpcm)
a) \((2+\sqrt{3})\sqrt{7-4\sqrt{3}}\)
\(=(2+\sqrt{3})\sqrt{4-4\sqrt{3}+3}\)
\(=(2+\sqrt{3})\sqrt{(2-\sqrt{3})^2}\)
\(=(2+\sqrt{3})(2-\sqrt{3})=4-3=1\)
b) \(\sqrt{(1-\sqrt{2023})^2}\cdot\sqrt{2024+2\sqrt{2023}}\)
\(=|1-\sqrt{2023}|\sqrt{2023+2\sqrt{2023}+1}\)
\(=(\sqrt{2023}-1)\sqrt{(\sqrt{2023}+1)^2}\)
\(=(\sqrt{2023}-1)(\sqrt{2023}+1)\)
\(=\sqrt{2023^2}-1^2=2023-1=2022\)