Đề Phân tích đa thức thành nhân tử 1/(1 - x )+ 1/(1+x)+2/(1+x^2)+ 4/(1+x^4)+8/(1+x^8) - 16/(1+ x^16)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x^40+2.x^20+9 = [x^20 +3]^2 - 4x^20 = [x^20+3]^2 -[2x^10]^2 = [x^20-2x^10+3].[x^20+2x^10+3]
x^12+x^6+1 = x^12 + 2x^6 +1 - x^6 = [x^6 +1]^2 -[x^3]^2 = [x^6 -x^3 +1].[x^6+x^3+1]
x^16+x^8+1 =[x^8+1]^2 - [x^4]^2 = [x^8-x^4+1].[x^8+x^4+1]
x^4+x^2+1 = x^4+2x^2+1 - x^2 = [x^2+1]^2-x^2 = [x^2-x+1].[x^2+x+1]
ta có
\(5x=-3y=4z\)
\(\Rightarrow\frac{x}{12}=-\frac{y}{20}=\frac{z}{15}\)
\(\Rightarrow\frac{x}{12}=-\frac{y}{20}=\frac{3z}{45}=\frac{x-y+3z}{12+20+45}=\frac{7}{77}=\frac{1}{11}\)
\(\Rightarrow\hept{\begin{cases}x=\frac{1}{11}.12=\frac{12}{11}\\-y=\frac{1}{11}.20=\frac{20}{11}\\3z=\frac{1}{11}.45=\frac{45}{11}\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=\frac{12}{11}\\y=-\frac{20}{11}\\z=\frac{45}{11}:3=\frac{15}{11}\end{cases}}\)
Vậy \(\hept{\begin{cases}x=\frac{12}{11}\\y=\frac{-20}{11}\\z=\frac{15}{11}\end{cases}}\)
\(x^8+x+1\)
\(=x^8+x^7+x^6-x^7-x^6-x^5+x^5+x^4+x^3-x^4-x^3-x^2+x^2+x+1\)
\(=x^6\left(x^2+x+1\right)-x^5\left(x^2+x+1\right)+x^3\left(x^2+x+1\right)-x^2\left(x^2+x+1\right)+x^2+x+1\)
\(=\left(x^2+x+1\right)\left(x^6-x^5+x^3-x^2+1\right)\)
\(1,=3xy\left(x^2+2xy+y^2\right)=3xy\left(x+y\right)^2\\ 2,=7xy\left(2x-3y+4xy\right)\\ 3,=\left(x-1\right)\left(x^2-4\right)=\left(x-2\right)\left(x+2\right)\left(x-1\right)\\ 4,=\left(x-y\right)\left(10x+8\right)=2\left(5x+4\right)\left(x-y\right)\\ 5,=\left(b-c\right)\left(8a-6b\right)=2\left(4a-3b\right)\left(b-c\right)\\ 6,=\left(x-1\right)\left(x^2-16\right)=\left(x-4\right)\left(x+4\right)\left(x-1\right)\\ 7,=x\left(x-y\right)+5\left(x-y\right)=\left(x-y\right)\left(x+5\right)\\ 8,=\left(3x+1-x-1\right)\left(3x+1+x+1\right)=2x\left(4x+2\right)=4x\left(2x+1\right)\\ 9,=\left(2x-3y\right)\left(4x^2+6xy+9y^2\right)\\ 10,=\left(x-1\right)^2-4y^2=\left(x-2y-1\right)\left(x+2y-1\right)\)
(x+y+z)^3 - x^3 - y^3 - z^3
\(=x^3+y^3+z^3+3xy\left(x+y\right)+3yz\left(y+z\right)+3xz\left(x+z\right)-x^3-y^3-z^3\)
\(=3x^2y+3xy^2+3y^2z+3yz^2+3x^2z+3xz^2\)
\(=3\left(x^2y+xy^2+y^2z+yz^2+x^2z+xz^2\right)\)
3.(2^2 +1 ).(2^4 +1).(2^8 +1).(2^16 +1)
\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^{16}-1\right)\left(2^{16}+1\right)=2^{32}-1\)
1/ \(\left(x^2+x+4\right)^2+8x\left(x^2+x+4\right)+15x^2=x^4+10x^3+32x^2+40x+16\)(làm tắt nhưng chắc bạn tự hiểu đc)
\(=\left(x^4+2x^3\right)+\left(4x^2+2x^3\right)+\left(12x^2+6x^3\right)+\left(4x^2+8x\right)+\left(12x^2+24x\right)+\left(8x+16\right)\)
\(=x^3\left(x+2\right)+2x^2\left(2+x\right)+6x^2\left(2+x\right)+4x\left(x+2\right)+12x\left(x+2\right)+8\left(x+2\right)\)
\(=\left(x+2\right)\left(x^3+2x^2+6x^2+4x+12x+8\right)=\left(x+2\right)\left(x^3+8x^2+16x+8\right)\)
\(=\left(x+2\right)\left[\left(x^3+2x^2\right)+\left(6x^2+12x\right)+\left(4x+8\right)\right]=\left(x+2\right)\left[x^2\left(x+2\right)+6x\left(x+2\right)+4\left(x+2\right)\right]\)
\(=\left(x+2\right)\left(x+2\right)\left(x^2+6x+4\right)\)
2/ \(\left(x+2\right)\left(x+4\right)\left(x+6\right)\left(x+8\right)+16=x^4+20x^3+140x^2+400x+400\)
\(=\left(x^4+10x^3+20x^2\right)+\left(10x^3+100x^2+200x\right)+\left(20x^2+200x+400\right)\)
\(=x^2\left(x^2+10x+20\right)+10x\left(x^2+10x+20\right)+20\left(x^2+10x+20\right)\)
\(=\left(x^2+10x+20\right)\left(x^2+10x+20\right)=\left(x^2+10x+20\right)^2\)