K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 8 2017

1 . tìm giá trị x 

\(\left(x+1\right)+\left(x+4\right)+....+\left(x+28\right)=115.\)

\(\Rightarrow\left(x+x+x+....x\right)+\left(1+4+..+28\right)=115\)

\(\Rightarrow10x+\left(28+1\right).10:2=115\)

\(\Rightarrow10x+145=115\)

\(\Rightarrow10x=115-145=-30\)

\(\Rightarrow x=-30:10=-3\)

21 tháng 11 2016

Bai 1

so so hang la: [(28+x)-(x+1)]/3+1= 10 so hang

tong =[(x+1)+(x+28)]*10/2=(2x+29)*10/2=115

(2x+29)*5=115

2x+29=115/5=23

2x=23-29=-6

x=-3

a: Số số hạng là:

(2n-2):2+1=n(số)

Theo đề, ta có:

\(\left(2n+2\right)\cdot\dfrac{n}{2}=210\)

\(\Leftrightarrow n\left(n+1\right)=210\)

\(\Leftrightarrow n=14\)

8 tháng 1 2019

a,A=|x-7|+12

  Vì \(\left|x-7\right|\ge0\forall x\)nên \(\left|x-7\right|+12\ge12\forall x\)

  Ta thấy A=12 khi |x-7| = 0 => x-7 = 0 => x = 7

  Vậy GTNN của A là 12 khi x = 7

b,B=|x+12|+|y-1|+4

   Vì \(\left|x+12\right|\ge0\forall x\)

        \(\left|y-1\right|\ge0\forall y\)

   nên \(\left|x+12\right|+\left|y-1\right|\ge0\forall x,y\)

      \(\Rightarrow\left|x+12\right|+\left|y-1\right|+4\ge4\forall x,y\)

Ta thấy B = 4 khi \(\hept{\begin{cases}\left|x+12\right|=0\\\left|y-1\right|=0\end{cases}}\Rightarrow\hept{\begin{cases}x+12=0\\y-1=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-12\\y=1\end{cases}}\)

Vậy GTNN của B là 4 khi x = -12 và y = 1

8 tháng 1 2019

cậu có thể làm những ý khác ko

8 tháng 1 2019

Khó thế!!!

8 tháng 1 2019

\(1a,A=\left|5-x\right|+\left|y-2\right|-3\)

Vì \(\left|5-x\right|\ge vs\forall x,\left|y-2\right|\ge vs\forall y\Rightarrow A\ge3\)

Dấu \("="\) xảy ra \(\Leftrightarrow\hept{\begin{cases}\left|5-x\right|=0\\\left|y-2\right|=0\end{cases}}\Leftrightarrow\hept{\begin{cases}5-x=0\\y-2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=5\\y=2\end{cases}}\)

Vậy \(A_{min}=3\Leftrightarrow x=5,y=2\)

\(b,B=\left|4-2x\right|+y^2+\left(2-1\right)^2-6\)

\(=\left|4-2x\right|+y^2-5\)

Vì \(\left|4-2x\right|\ge vs\forall x;y^2\ge0vs\forall y\Rightarrow B\ge-5\)

Dấu \("="\) xảy ra \(\Leftrightarrow\hept{\begin{cases}\left|4-2x\right|=0\\y^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}4-2x=0\\y=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y=0\end{cases}}\)

Vậy \(B_{min}=-5\Leftrightarrow x=2,y=0\)

\(c,C=\frac{1}{2}-\left|x-2\right|\) ( bn xem lại đề nhé )

Bài 3:

a: \(\Leftrightarrow8n^2+4n-8n-4+5⋮2n+1\)

\(\Leftrightarrow2n+1\in\left\{1;-1;5;-5\right\}\)

hay \(n\in\left\{0;-1;2;-3\right\}\)

b: \(\Leftrightarrow4n^3-2n^2-6n+3+2⋮2n-1\)

\(\Leftrightarrow2n-1\in\left\{1;-1\right\}\)

hay \(n\in\left\{1;0\right\}\)

Bài 2: 

\(\Leftrightarrow n+1\in\left\{1;2;4\right\}\)

hay \(n\in\left\{0;1;3\right\}\)