BẤT ĐẲNG THỨC CÔSI
Cho a,b,c là các số dương thỏa mãn a+b+c=3. Cmr:
a^3/(b+c)^2 + b^2/(c+a)^2 + c^3/(a+b)^2 >= 3/4
Thks nhiều nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta chứng minh BĐT phụ sau:
\(\dfrac{a^3}{a^2+b^2}\ge\dfrac{2a-b}{2}\)
Thật vậy, BĐT tương đương:
\(2a^3-\left(2a-b\right)\left(a^2+b^2\right)\ge0\)
\(\Leftrightarrow b\left(a-b\right)^2\ge0\) (luôn đúng với a;b dương)
Tương tự: \(\dfrac{b^3}{b^3+c^3}\ge\dfrac{2b-c}{2}\) ; \(\dfrac{c^3}{c^3+a^3}\ge\dfrac{2c-a}{2}\)
Cộng vế với vế:
\(VT\ge\dfrac{a+b+c}{2}=3\) (đpcm)
Đặt \(A=\frac{a^3}{a^2+b^2}+\frac{b^3}{b^2+c^2}+\frac{c^3}{c^2+a^2}\left(a,b,c>0\right)\).
Ta có:
\(\frac{a^3}{a^2+b^2}=\frac{a\left(a^2+b^2-b^2\right)}{a^2+b^2}=\frac{a\left(a^2+b^2\right)-ab^2}{a^2+b^2}=a-\frac{ab^2}{a^2+b^2}\).
Vì \(a,b>0\)nên áp dụng bất đẳng thức Cô-si cho 2 số dương, ta được:
\(a^2+b^2\ge2ab\).
\(\Rightarrow\frac{1}{a^2+b^2}\le\frac{1}{2ab}\).
\(\Leftrightarrow\frac{ab^2}{a^2+b^2}\le\frac{ab^2}{2ab}=\frac{b}{2}\).
\(\Rightarrow\frac{-ab^2}{a^2+b^2}\ge\frac{-b}{2}\).
\(\Leftrightarrow a-\frac{ab^2}{a^2+b^2}\ge a-\frac{b}{2}\).
\(\Leftrightarrow\frac{a^3}{a^2+b^2}\ge a-\frac{b}{2}\left(1\right)\).
Dấu bằng xảy ra \(\Leftrightarrow a=b>0\).
Chứng minh tương tự, ta được:
\(\frac{b^3}{b^2+c^2}\ge b-\frac{c}{2}\).với \(b,c>0\)\(\left(2\right)\)
Dấu bẳng xảy ra \(\Leftrightarrow b=c>0\).
Chứng minh tương tự, ta được:
\(\frac{c^3}{c^2+a^2}\ge c-\frac{a}{2}\)với \(a,c>0\)\(\left(3\right)\).
Dấu bằng xảy ra \(\Leftrightarrow a=c>0\).
Từ \(\left(1\right),\left(2\right),\left(3\right)\), ta được:
\(\frac{a^3}{a^2+b^2}+\frac{b^3}{b^2+c^2}+\frac{c^3}{c^2+a^2}\)\(\ge\)\(a+b+c-\frac{a}{2}-\frac{b}{2}-\frac{c}{2}\).
\(\Leftrightarrow A\ge\frac{a+b+c}{2}\).
\(\Leftrightarrow A\ge\frac{6}{2}\)(vì \(a+b+c=6\)).
\(\Leftrightarrow A\ge3\)(điều phải chứng minh).
Dấu bằng xảy ra.
\(\Leftrightarrow\hept{\begin{cases}a=b=c>0\\a+b+c=6\end{cases}}\Leftrightarrow a=b=c=2\).
Vậy nếu \(a,b,c\)là các số thực dương thỏa mãn \(a+b+c=6\)thì:
\(\frac{a^3}{a^2+b^2}+\frac{b^3}{b^2+c^2}+\frac{c^3}{c^2+a^2}\ge3\).
Bài 1:
Áp dụng BĐT Bunhiacopxky ta có:
$(a^2+b^2+c^2)(1+1+1)\geq (a+b+c)^2$
$\Leftrightarrow 3(a^2+b^2+c^2)\geq 1$
$\Leftrightarrow a^2+b^2+c^2\geq \frac{1}{3}$ (đpcm)
Dấu "=" xảy ra khi $a=b=c=\frac{1}{3}$
Bài 2:
Áp dụng BĐT Bunhiacopxky:
$(a^2+4b^2+9c^2)(1+\frac{1}{4}+\frac{1}{9})\geq (a+b+c)^2$
$\Leftrightarrow 2015.\frac{49}{36}\geq (a+b+c)^2$
$\Leftrightarrow \frac{98735}{36}\geq (a+b+c)^2$
$\Rightarrow a+b+c\leq \frac{7\sqrt{2015}}{6}$ chứ không phải $\frac{\sqrt{14}}{6}$ :''>>
\(VP=\frac{1}{2}\Sigma\sqrt{4\left(a^2b+a^2c\right)}\le\frac{1}{4}\Sigma\left(4+a^2b+a^2c\right)\)
\(=3+\frac{1}{4}\Sigma ab\left(a+b\right)\le3+\frac{1}{2}\left(a^3+b^3+c^3\right)\)
\(=\frac{1}{2}\left(a^3+b^3+c^3+3abc\right)\le a^3+b^3+c^3\)
Đẳng thức xảy ra khi \(a=b=c\)
Ta có: \(\frac{a^3}{a^2+b^2}=\frac{\left(a^3+ab^2\right)-ab^2}{a^2+b^2}=a-\frac{ab^2}{a^2+b^2}\ge a-\frac{ab^2}{2ab}=a-\frac{b}{2}\)
Tương tự CM được:
\(\frac{b^3}{b^2+c^2}\ge b-\frac{c}{2}\) và \(\frac{c^3}{c^2+a^2}\ge c-\frac{a}{2}\)
Cộng vế 3 BĐT trên lại ta được:
\(\frac{a^3}{b^2+c^2}+\frac{b^3}{b^2+c^2}+\frac{c^3}{c^2+a^2}\ge\frac{a+b+c}{2}=3\)
Dấu "=" xảy ra khi: a = b = c = 2
\(\left(a^3+b^2+c\right)\left(\dfrac{1}{a}+1+c\right)\ge\left(a+b+c\right)^2\)
\(\Rightarrow\dfrac{a^3+b^2+c}{a}\ge\dfrac{\left(a+b+c\right)^2}{1+a+ac}=\dfrac{9}{1+a+ac}\)
\(\Rightarrow\dfrac{a}{a^3+b^2+c}\le\dfrac{1+a+ac}{9}\)
Tương tự: \(\dfrac{b}{b^3+c^2+a}\le\dfrac{1+b+ab}{9}\); \(\dfrac{c}{c^3+a^2+b}\le\dfrac{1+c+bc}{9}\)
Cộng vế:
\(P\le\dfrac{3+a+b+c+ab+bc+ca}{9}\le\dfrac{6+\dfrac{1}{3}\left(a+b+c\right)^3}{9}=1\)
Dấu "=" xảy ra khi \(a=b=c=1\)