cho tam giác ABC cân tại A nội tiếp (O) bán kính R.Trên cung nhỏ BC lấy điểm K. AK cắt BC tại D.
a)chứng minh: AO là tia phân giác của góc BAC
b) AB^2=AD.AK
GIẢI GIÚP EM 2 CÂU NÀY NHÀ M.N
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(\hept{\begin{cases}\widehat{BMD}=\widehat{BAD}=\frac{1}{2}sđ\widebat{BD}\\\widehat{DMC}=\widehat{DAC}=\frac{1}{2}sđ\widebat{CD}\end{cases}}\)
mà \(\widehat{BAD}=\widehat{DAC}=\frac{1}{2}\widehat{BAC}\)
=> \(\widehat{BMD}=\widehat{DMC}\)
=> MD là phân giác góc BMC
b) Ta có: \(\widehat{BMC}=2\widehat{MBE}\)( cùng bù \(\widehat{BME}\))
<=> \(2\widehat{BMD}=2\widehat{MBE}\)
=> \(\widehat{BMD}=\widehat{MBE}\left(SLT\right)\)
=> BE song song MD
=> BE song song MI
c) Ta có: \(\widehat{MCD}=\frac{\widebat{BM}+\widebat{BD}}{2}=\widehat{DKC}\)(1)
Mặt khác: \(\widehat{DIC}=\frac{\widebat{BM}+\widebat{DC}}{2}\)(2)
Từ (1),(2) => \(\widehat{DIC}=\widehat{DKC}\)( \(\widebat{BD}=\widebat{DC}\))
=> DCKI nội tiếp
a, O là tâm đường tròn nội tiếp nên AO là đường trung trực của tam giác ABC. Tam giác ABC cân tại A nên AO cũng là đường phân giác của góc A.
b, Tamm giác ABK và tam giác ADB có: Góc A chung; AKB = ABD vì chắn hai cung bằng nhau AB và AC. Suy ra tam giác ABK đồng dạng với tam giác ADB. Suy ra\(\frac{AB}{AK}=\frac{AD}{AB}\)suy ra AB2=AD.AK