Cho n là tổng của 2 số chính phương chứng minh rằng n^2 cũng là tổng của 2 số chính phuơ
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
BK
1
15 tháng 7 2015
Đặt n=a^2+b^2
Khi đó n^2=(a^2+b^2)^2−4a^2b^2+4a^2b^2=(a^2−2ab+b^2)(a^2+2ab+b^2)+(2ab)^2=[(a+b)(a−b)]^2+(2ab)^2
NK
11 tháng 1 2016
Ta có:
Vì n là tổng của 2 số chính phương
=> đặt n = a2 + b2
=> 2n = (a2 + b2) + (a2 + b2)
=> 2n = (a2 + a2) + (b2 + b2)
=> 2n = 2a2 + 2b2 là tổng của 2 số chính phương (ĐPCM)
Vậy...
Gọi 2 số chính phương đó là: \(a^2\) và \(b^2\)
Ta có:
\(n=a^2+b^2\)
\(n^2=a^4+2\left(ab\right)^2+b^4\)
\(n^2=\left(a^4-2\left(ab\right)^2+b^4\right)+4\left(ab\right)^2\)
\(n^2=\left(a^2-b^2\right)^2+\left(2ab\right)^2\left(đpcm\right)\)
=> n^2 cũng là tổng của 2 số chính phương