Tìm \(n\in N\)để
a) n2 + n - 5 chia hết cho n + 3
b) n2 - 3n + 1 chia hết cho n - 2
c) 2n2 + 3n - 2 chia hết cho n + 3
d) 3n2 - 2n - 3 chia hết cho n + 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\Leftrightarrow n-3\in\left\{-1;1;11\right\}\)
hay \(n\in\left\{2;4;14\right\}\)
Lời giải:
a.
$3n+2\vdots n-3$
$3(n-3)+11\vdots n-3$
$\Rightarrow 11\vdots n-3$
$\Rightarrow n-3\in\left\{1; -1; 11; -11\right\}$
$\Rightarrow n\in\left\{4; 2; 14; -8\right\}$
Vì $n$ tự nhiên nên $n\in\left\{4;2;14\right\}$
b.
$n^2+7n+9\vdots n+7$
$n(n+7)+9\vdots n+7$
$\Rightarrow 9\vdots n+7$
$\Rightarrow n+7\in\left\{1; -1; 3; -3; 9; -9\right\}$
$\Rightarrow n\in\left\{-6; -8; -4; -10; 2; -16\right\}$
Vì $n$ tự nhiên nên $n=2$
a: \(\Leftrightarrow n-3\in\left\{-1;1;11\right\}\)
hay \(n\in\left\{2;4;14\right\}\)
cách khác : a/ n + 6 = (n + 2) + 4 chia het cho n + 2 => 4 chia het cho n + 2 => n + 2 la uoc cua 4
=>ma n + 2 >=2 nen ta co hai truong hop
n + 2 = 4 => n = 2;
n + 2 = 2 => n = 0,
Vay n = 2 ; 0.
b/ Tuong tu cau a
c/ (3n + 1) Chia het cho 11 - 2n => [2(3n + 1) + 3(11 - 2n)] chia het cho 11 - 2n
=> 35 chia het cho 11 - 2n =>
+)11 - 2n = 1 => n = 5
+)11 - 2n = 5 => n = 3
+)11 - 2n = 7 => n = 2
+)11 - 2n = 35 => n < 0 (loai)
+)11 - 2n = -1 => n = 6
+)11 - 2n = - 5 => n = 8
+)11 - 2n = -7 => n = 9
+)11 - 2n = -35 => n=23
Vay : n = 2;3;5;6;8;9;23
d/ B = (n2 + 4):(n + 1) = [(n +1)(n - 1) + 5]:(n + 1) = n - 1 + 5/(n +1)
Do n2 + 4 chia het cho n + 1 => 5 chia het cho n +1 => n = 0;4.
a) n+6 chia hết cho n+2=> n+2 là ước của n+6=>n+2 là Ư(4)={-4,-2,-1,1,2,4}
n+2=-4=>n=-6
n+2=-2=>n=-4
n+2=-1=>n=-3
n+2=1=>n=-1
n+2=2=>n=0
n+2=4=>n=2
vậy x thuộc {-6,-4,-3,-1,0,2}
b) tương tự
a. n + 6 chia hết cho n + 2
=> n + 2 + 4 chia hết cho n + 2
Mà n + 2 chia hết cho n + 2
=> 4 chia hết cho n + 2
=> n + 2 thuộc Ư(4) = {-4; -2; -1; 1; 2; 4}
Mà n thuộc N
=> n thuộc {0; 2}.
b. 2n + 3 chia hết cho n - 2
=> 2n - 4 + 7 chia hết cho n - 2
=> 2.(n - 2) + 7 chia hết cho n - 2
Mà 2.(n - 2) chia hết cho n - 2
=> 7 chia hết cho n - 2
=> n - 2 thuộc Ư(7) = {-7; -1; 1; 7}
Mà n thuộc N
=> n thuộc {1; 3; 9}.
c. 3n + 1 chia hết cho 11 - 2n
=> 3n + 1 chia hết cho -(11 - 2n)
=> 3n + 1 chia hết cho 2n - 11
=> 2.(3n + 1) chia hết cho 2n - 11
=> 6n + 2 chia hết cho 2n - 11
=> 6n - 33 + 35 chia hết cho 2n - 11
=> 3.(2n - 11) + 35 chia hết cho 2n - 11
=> 35 chia hết cho 2n - 11
=> 2n - 11 thuộc Ư(35) = {-35; -7; -5; -1; 1; 5; 7; 35}
Mà n thuộc N
=> n thuộc {2; 3; 5; 6; 8; 9; 23}
d. n2 + 4 chia hết cho n + 1
=> n2 + 4 - n.(n + 1) chia hết cho n + 1
=> n2 + 4 - n2 - n chia hết cho n + 1
=> -n + 4 chia hết cho n + 1
=> -(n - 4) chia hết cho n + 1
=> n - 4 chia hết cho n + 1
=> n + 1 - 5 chia hết cho n + 1
=> 5 chia hết cho n + 1
=> n + 1 thuộc Ư(5) = {-5; -1; 1; 5}
Mà n thuộc N
=> n thuộc {0; 4}.
a. n + 4 \(⋮\) n
\(\Rightarrow\left\{{}\begin{matrix}n⋮n\\4⋮n\end{matrix}\right.\)
4 \(⋮\) n
\(\Rightarrow\) n \(\in\) Ư (4) = {1; 2; 4}
\(\Rightarrow\) n \(\in\) {1; 2; 4}
b. 3n + 11 \(⋮\) n + 2
3n + 6 + 5 \(⋮\) n + 2
3(n + 2) + 5 \(⋮\) n + 2
\(\Rightarrow\left\{{}\begin{matrix}3\left(n+2\right)\text{}⋮n+2\\5⋮n+2\end{matrix}\right.\)
\(\Rightarrow\) 5 \(⋮\) n + 2
\(\Rightarrow\) n + 2 \(\in\) Ư (5) = {1; 5}
n + 2 | 1 | 5 |
n | vô lí | 3 |
\(\Rightarrow\) n = 3
a: Ta có: \(3n+2⋮n-1\)
\(\Leftrightarrow n-1\in\left\{1;-1;5;-5\right\}\)
hay \(n\in\left\{2;0;6;-4\right\}\)
a,
Ta có: 4n-5 chia hết cho 2n-1
=>4n-2-3 chia hết cho 2n-1
=>2.(2n-1)-3 chia hết cho 2n-1
=>3 chia hết cho 2n-1
=>2n-1=Ư(3)=(-1,-3,1,3)
=>2n=(0,-2,2,4)
=>n=(0,-1,1,2)
Vậy n=0,-1,1,2