Rút gọn biểu thức sau:\(\frac{\left(c.2\right).\left(o.2\right).\left(n:4\right).2.y}{c.16.\text{ô}}\)\(\frac{\text{ê}.8.u}{1}\)
Giữa 2 biểu thức có dấu nhân
>_<
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{\left[\left(e-m\right)^2-\left(e+m\right)\right]\left[\left(y-1\right)^2\left(y+1\right)^2\right]}{a.16.nh}.\frac{ê}{u^{-1}}\)
\(=\frac{\left[\left(e-m\right)^2\left(e+m\right)^2\right]\left[\left(y-1\right)^2\left(y+1\right)^2\right]}{16.anh}.êu\)
\(=\frac{\left(e^2-2em+m^2-e^2-2em.m^2\right)\left(y^2-2y+1-y^2-2y-1\right)}{16anh}.êu\)
\(=-\frac{4em\left(-4y\right)}{16anh}.êu\)
\(=\frac{emy}{anh}.êu\)
\(=\frac{em.yêu}{anh}\)
\(=\frac{\left(e^2-2em+m^2-e^2-2em-m^2\right)\left(y^2-2y+1-y^2-2y-1\right)}{a.16.n.h}\)\(\times\frac{ê}{u^{-1}}\)
= \(\frac{\left(-4\right)em.\left(-4\right)y}{a.16.n.h}\)\(\times\frac{ê}{u^{-1}}\)
= \(\frac{16.e.m.y}{16.a.n.h}\times\frac{ê}{u^{-1}}\)
= \(\frac{e.m.y}{a.n.h}\times\frac{ê}{\frac{1}{u}}\)
= \(\frac{e.m.y}{a.n.h}\timesê.u\)
= \(\frac{e.m.y.ê.u}{a.n.h}\)
Đặt A = \(\left(1+\frac{2}{4}\right).\left(1+\frac{2}{10}\right).\left(1+\frac{2}{18}\right).....\left(1+\frac{2}{n^2+3n}\right)\)
Ta có : A = \(\left(1+\frac{2}{4}\right).\left(1+\frac{2}{10}\right).\left(1+\frac{2}{18}\right).....\left(1+\frac{2}{n^2+3n}\right)\)
= \(\frac{6}{4}.\frac{12}{10}.\frac{20}{18}.....\frac{\left(n+1\right).\left(n+2\right)}{n.\left(n+3\right)}\)
= \(\frac{3.2}{4}.\frac{3.4}{2.5}.\frac{4.5}{3.6}.....\frac{\left(n+1\right).\left(n+2\right)}{n.\left(n+3\right)}\)
= \(\frac{3.2.3.4.4.5....n}{2.3.4.5.6.....\left(n+2\right)}\)
= \(\frac{3.\left(n+1\right)}{n+2}\)
Vậy A = \(\frac{3.\left(n+1\right)}{n+2}\)
khung ha co bai toan lop hai nao nhu the nay k ban nao dong y voi y kien cua minh thi k nhe
c.o.n.y.ê.u/c.ô