K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 11 2016

Gọi ba số cần tìm là a,b,c ta có a/3=b/5=c/7 và a+b+c=80 áp dụng tính chất ............ ta có a+b+c/3+5+7=80/15=16/3 a/3=16/3 suy ra a=16/3.3=16 tương tự mấy cái sau

9 tháng 8 2016

TRỜI ! MỘT BÀI TOÁN BÙ ĐẦU BÙ ÓC

11 tháng 8 2016

bài này lóp 7 hoc rù nhung quyen lop 7 nhình học giỏi lám đó

3 tháng 12 2021

Gọi số đo ba góc lần lượt là \(a,b,c\left(a,b,c>0\right)\)

Áp dụng tc dtsbn:

\(\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{c}{5}=\dfrac{a+b+c}{3+4+5}=\dfrac{180}{12}=15\)

\(\Rightarrow\left\{{}\begin{matrix}a=45^0\\b=60^0\\c=75^0\end{matrix}\right.\)

2 tháng 6 2018

Gọi a, b, c (độ) lần lượt là số đo 3 góc A, B, C. (0 < a; b; c < 180º).

Theo định lí tổng ba góc của tam giác ta có:

    a + b + c = 180.

Vì số đo 3 góc tỉ lệ với 3; 5; 7 nên ta có:

Bài 15 trang 67 sách bài tập Toán 7 Tập 1 | Giải SBT Toán 7

Vậy số đo ba góc của tam giác ABC là: 36o; 60o; 84o

8 tháng 12 2021

-tổng 3 góc của 1 tam giác=180

-gọi ^A,^B,^C lần lượt là x,y,z

-áp dụng tính chất dãy tỉ số bằng nhau:

x/1=y/2=z/3=x+y+z/1+2+3=180/6=30

suy ra:x/1=30 suy ra x=30

suy ra:y/2=30 suy ra y=60

suy ra:z/3=30 suy ra z=90

suy ra ^A=30o;^B=60o;^C=90o

8 tháng 12 2021

Theo bài toán ta có:

\(\dfrac{A}{1}\)\(=\)\(\dfrac{B}{2}\)\(=\)\(\dfrac{C}{3}\) và A\(+\)B\(+\)C\(=\)180°(vì tổng ba góc của một tam giác bằng 180°)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\dfrac{A}{1}\)\(+\)\(\dfrac{B}{2}\)\(+\)\(\dfrac{C}{2}\)\(=\dfrac{A+B+C}{1+2+3}\)\(=\)\(\dfrac{180}{6}\)\(=\)30°

\(\Rightarrow\)\(\dfrac{A}{1}\)\(=\)30°. 1\(=\) 30°

    \(\dfrac{B}{2}\)\(=\) 30°. 2\(=\) 60°

     \(\dfrac{C}{3}\)\(=\)30°. 3\(=\)90°

Vậy số đo của ba góc A, B, C lần lượt là 30°, 60° và 90°

24 tháng 11 2021

\(\dfrac{\widehat{A}}{3}=\dfrac{\widehat{B}}{5}=\dfrac{\widehat{C}}{7}=\dfrac{\widehat{A}+\widehat{B}+\widehat{C}}{3+5+7}=\dfrac{180^0}{15}=12^0\\ \Rightarrow\left\{{}\begin{matrix}\widehat{A}=36^0\\\widehat{B}=60^0\\\widehat{C}=84^0\end{matrix}\right.\)

`a,` Gọi số đo `3` góc của Tam giác `ABC` lần lượt là `x,y,z (x,y,z \ne 0)`

Tỉ lệ thức biểu diễn mối quan hệ giữa số đo `3` góc trong Tam giác `ABC` là `x/2=y/3=z/4`

`b,` Tổng số đo `3` góc trong `1` tam giác là `180^0`

`-> x+y+z=180`

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

`x/2=y/3=z/4=(x+y+z)/(2+3+4)=180/9=20`

`-> x/2=y/3=z/4=20`

`->x=20*2=40, y=20*3=60, z=20*4=80`

Vậy, số đo của `3` góc trong Tam giác `ABC` lần lượt là `40^0, 60^0, 80^0.`

a:

Đặt \(a=\widehat{A};b=\widehat{B};c=\widehat{C}\)

a/2=b/3=c/4

b: a/2=b/3=c/4=(a+b+c)/(2+3+4)=180/9=20

=>a=40; b=60; c=80

21 tháng 7 2021

Bạn tham khảo ở đây: https://olm.vn/hoi-dap/detail/1284076363999.html

11 tháng 11 2021

ΔABCΔABC có ˆA+ˆB+ˆC=180oA^+B^+C^=180o

Theo để bài  ˆA3=ˆB4=ˆC5A^3=B^4=C^5

Áp dụng tính chất của dãy tỉ số bằng nhau ta có: 

ˆA3=ˆB4=ˆC5=ˆA+ˆB+ˆC3+4+5=180o12=15oA^3=B^4=C^5=A^+B^+C^3+4+5=180o12=15o

hay: ˆA3=15o⇒ˆA=15o.3=45oA^3=15o⇒A^=15o.3=45o

       ˆB4=15o⇒ˆB=15o.4=60oB^4=15o⇒B^=15o.4=60o

       ˆC5=15o⇒ˆC=15o.5=75o

18 tháng 6 2016

Ta có: số đo 3 góc lần lượt là x;y;z

Ta có: \(\frac{15}{x}=\frac{16}{y}=\frac{18}{z}=\frac{15+16+18}{x+y+z}=\frac{49}{180}\)

Vậy số đo góc x là: \(x=\frac{15\times180}{49}=\frac{2700}{49}\)

Vậy số đo góc y là: \(y=\frac{16\times180}{49}=\frac{2880}{49}\)

Vậy số đo góc z là: \(z=\frac{18\times180}{49}=\frac{3240}{49}\)

18 tháng 6 2016

Tam giác ABC có \(\widehat{A}+\widehat{B}+\widehat{C}=180^o\) (định lí tổng 3 góc của tam giác)

Theo đề bài : \(\frac{\widehat{A}}{\frac{1}{15}}=\frac{\widehat{B}}{\frac{1}{16}}=\frac{\widehat{C}}{\frac{1}{18}}=\frac{\widehat{A}+\widehat{B}+\widehat{C}}{\frac{1}{15}+\frac{1}{16}+\frac{1}{18}}=\frac{180^o}{\frac{133}{720}}\approx974\) (tính chất dãy tỉ số bằng nhau)

=> \(\widehat{A}\approx65^o\) ; \(\widehat{B}\approx61^o\) ; \(\widehat{C}\approx54^o\)

Bạn kiểm tra lại đề, thông thường số góc k lẻ vậy ok

21 tháng 7 2021

Gọi số đo 3 góc của \(\Delta ABC\)lần lượt là a; b; c (a; b; c \(\inℤ\)/ a+b+c=1800 )

Vì a; b; c lần lượt tỉ lệ với 3; 4; 5 nên:

\(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}\)

Áp dụng t/c DTSBN, ta có:

\(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}\)\(=\frac{a+b+c}{3+4+5}\)\(=\frac{180}{12}=15\)

=> a=15.3=45

b=15.4=60

c= 15.5=75

Đ/s: ...