Tìm n, và n là số tự nhiên
5n chia hết cho n-2
3n+4 chia hết cho n+1
5n chia hết cho n+2
Nhớ ghi cách làm ra luôn nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
5n\(⋮\)n-2
5n-10+10\(⋮\)n-2
5(n-2)+10\(⋮\)n-2
Vì 5(n-2)\(⋮\)n-2
Buộc 10\(⋮\)n-2=>n-2 ϵ Ư(10)={1;2;5;10}
ta có bảng sau :
n-2 | 1 | 2 | 5 | 10 |
n | 3 | 4 | 7 | 8 |
vậy n ϵ {3;4;7;8}
3n+4\(⋮\)n+1
3n+3+1\(⋮\)n+1
3(n+1)+1\(⋮\)n+1
Vì 3(n+1)\(⋮\)n+1
Buộc 1 \(⋮\)n+1=>n+1ϵƯ(1)={1}
Với n+1=1=>n=0
Vậy n ϵ {0}
1. Gọi số đó là n. Ta có n-1 chia hết cho 2; 3; 4; 5; 6
Để n nhỏ nhất thì n-1 nhỏ nhất. Vậy ta đi tìm BCNN của các số trên là 60
n-1 chia hết cho 60 hay n-1 = 60k <=> n = 60k + 1 (*)
n chia hết cho 7 => 60k + 1 chia hết cho 7
<=> 60k ≡ -1 (mod 7) <=> 56k + 4k ≡ -1 (mod 7) <=> 4k ≡ -1 (mod 7)
<=> 4k ≡ 6 (mod 7) <=> 2k ≡ 3 (mod 7) <=> 2k ≡ 10 (mod 7) <=> k ≡ 5 (mod 7)
Vậy k nhỏ nhất là 5
Thế vào (*): n = 301 thỏa mãn
2. a) n = 25k - 1 chia hết cho 9
<=> 25k ≡ 1 (mod 9) <=> 27k - 2k ≡ 1 (mod 9) <=> -2k ≡ 1 (mod 9) <=> -2k ≡ 10 (mod 9)
<=> -k ≡ 5 (mod 9) <=> k ≡ 4 (mod 9)
Để n nhỏ nhất thì k nhỏ nhất, vậy k là 4
Thế vào trên được n = 99 thỏa mãn
b) ... -3k ≡ 1 (mod 21) <=> -21k ≡ 7 (mod 21) => Vô lý vì -21k luôn chia hết cho 21
Vậy không có n thỏa mãn
c) Đặt n = 9k
9k ≡ -1 (mod 25) <=> 9k ≡ 24 (mod 25) <=> 3k ≡ 8 (mod 25) <=> 3k ≡ 33 (mod 25)
<=> k ≡ 11 (mod 25) => k = 25a + 11 (1)
9k ≡ -2 (mod 4) <=> 9k ≡ 2 (mod 4) <=> k ≡ 2 (mod 4) => k = 4b + 2 (2)
Từ (1) và (2) => 25a + 11 = 4b + 2 <=> 25a + 9 = 4b => 25a + 9 ≡ 0 (mod 4)
<=> a + 1 ≡ 0 (mod 4) (*)
Lưu ý rằng n tự nhiên nhỏ nhất => k tự nhiên nhỏ nhất => a tự nhiên nhỏ nhất. Vậy a thỏa mãn (*) là a = 3 => n = 774 thỏa mãn
Mình không được dạy dạng toán này nên không biết cách trình bày, cách giải cũng là mình "tự chế" nên nhiều chỗ hơi "lạ" một chút, không biết đúng không nữa :D
Ta có :
\(n^2+9n+9=n.\left(n+9\right)+9=n.\left(n-4\right)+13n+9\) chia hết cho n - 4
\(\Leftrightarrow13n+9=13n-52+61\) chia hết cho n - 4
\(\Leftrightarrow61\) chia hết cho n - 4
\(\Leftrightarrow n-4\inƯ\left(61\right)\)
\(\Leftrightarrow n-4\in\left\{1;61\right\}\)
\(\Leftrightarrow n\in\left\{5;65\right\}\)
\(a,n+4⋮n\)
do \(n⋮n\Rightarrow4⋮n\)
\(\Rightarrow n\in\left(1;2;4\right)\)
\(b,3n+7⋮n\)
do \(3n⋮n\Rightarrow7⋮n\)
\(\Rightarrow n\in\left(1;7\right)\)
\(c,27-5n⋮n\)
do \(5n⋮n\Rightarrow27⋮n\)
\(\Rightarrow n\in\left(1;3;9;27\right)\)
n + 4 chia hết cho n
vì n chia hết cho n
nên 4 chia hết cho n -> n thuộc Ư(4) = (1;2:4)
3n + 7 chia hết cho n
Vì 3n chia hết cho n
Nên 7 chia hết cho n-> n thuộc (7) = (1;7)
27- 5n chia hết cho n( 0 < n<5)
27- 5n chia hết cho n-> phép chia này có số dư bằng 0
A chia hết cho n, b chia hết cho n (a lớn hơn hoặc bằng b; a bé hơn hoặc bằng b)
Thì a – b; b – a thuộc n
Mà ta có 5n chia hết chon
Nên 27 chia hết cho n ->n thuộc Ư(27) = ( 1;3;9;27)
Mà 0 <n<5
Nên n thuộc (1;3)
\(a,\frac{n+6}{n+2}=\frac{n+2+4}{n+2}=1+\frac{4}{n+2}\)
Để \(n+6⋮n+2\Rightarrow\frac{4}{n+2}\in N\Leftrightarrow n+2\in\left(1;2;4\right)\)
\(\Rightarrow n\in\left(-1;0;2\right)\)
Vì \(n\in N\Rightarrow n\in\left(0;2\right)\)
\(b,2n+3⋮n-2\)
\(\Rightarrow2n-4+7⋮n-2\)
Do \(2n-4⋮n-2\Rightarrow7⋮n-2\)
\(\Rightarrow n-2\in\left(1;7\right)\)
\(\Rightarrow n\in\left(3;9\right)\)
\(d,n^2+4⋮n+1\)
\(\Rightarrow n^2+1+4⋮n+1\)
\(\Rightarrow4⋮n+1\)
\(\Rightarrow n+1\in\left(1;2;4\right)\)
\(\Rightarrow n\in\left(0;1;3\right)\)