giả sử các số x,y thỏa mãn x5+y5=2x2y2. chứng minh rằng 1-xy là bình phương của một số hữu tỉ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với y = 0 thi 1 - xy = 0 là bình phương của số hữu tỷ
Với y \(\ne0\)thì ta chia 2 vế cho y4 thì được
\(\frac{x^5}{y^4}+y=2\frac{x^2}{y^2}\)
\(\Leftrightarrow-y=\frac{x^5}{y^4}-2\frac{x^2}{y^2}\)
\(\Leftrightarrow-xy=\frac{x^6}{y^4}-2\frac{x^3}{y^2}\)
\(\Leftrightarrow\Leftrightarrow1-xy=\frac{x^6}{y^4}-2\frac{x^3}{y^2}+1=\left(\frac{x^3}{y^2}-1\right)^2\)
Vậy 1 - xy là bình phương của 1 số hữu tỷ
a) \(4\left(xy+yz+zx\right)=x^2+y^2+z^2+2\left(xy+yz+zx\right)=\left(x+y+z\right)^2\) là bình phương 1 số hữu tỉ => 4(xy+yz+zx) cũng là bp số hữu tỉ mà 4=22 => xy+yz+zx là bp 1 số hữu tỉ
b) \(x^2+y^2+z^2=2\left(xy+yz+zx\right)\)\(\Leftrightarrow\)\(\left(x+y\right)^2+z^2=4xy+2yz+2zx\)
\(\Leftrightarrow\)\(\left(x+y\right)^2-2z\left(x+y\right)+z^2=4xy\)\(\Leftrightarrow\)\(\left(x+y-z\right)^2=4xy\)
Do (x+y-z)2 là bình phương 1 số hữu tỉ => 4xy là bp số hữu tỉ => xy là bp số hữu tỉ
ta có
\(\frac{1-2x}{1-x}+\frac{1-2y}{1-y}=1\Leftrightarrow\left(1-2x\right)\left(1-y\right)+\left(1-2y\right)\left(1-x\right)=\left(1-x\right)\left(1-y\right)\)
\(\Leftrightarrow1-2\left(x+y\right)+3xy=0\)
Vậy \(M=x^2+y^2-xy+\left(1-2\left(x+y\right)+3xy\right)=\left(x+y+1\right)^2\)
vậy ta có đpcm
Câu hỏi của Nguyễn Phong - Toán lớp 8 - Học toán với OnlineMath
\(\frac{1-2x}{1-x}=1\)
\(\Leftrightarrow1-x=1-2x\)
\(\Leftrightarrow-x+2x=1-1\)
\(\Leftrightarrow x=0\)
Tương tự ta cũng có \(y=0\)
Khi đó : \(x^2+y^2-xy=0^2+0^2-0\cdot0=0=0^2\left(đpcm\right)\)
\(x^2+y^2+\left(\frac{xy+1}{x+y}\right)^2=2\)
\(\Leftrightarrow x^2+2xy+y^2+\left(\frac{xy+1}{x+y}\right)^2=2+2xy\)
\(\Leftrightarrow\left(x+y\right)^2+\left(\frac{xy+1}{x+y}\right)^2-2\left(1+xy\right)=0\)
\(\Leftrightarrow\left(x+y\right)^2+\left(\frac{xy+1}{x+y}\right)^2-2\left(x+y\right).\frac{xy+1}{x+y}=0\)
\(\Leftrightarrow\left(x+y-\frac{xy+1}{x+y}\right)^2=0\)
\(\Leftrightarrow\left(x+y-\frac{xy+1}{x+y}\right)=0\)
\(\Leftrightarrow x+y=\frac{xy+1}{x+y}\)
\(\Leftrightarrow xy+1=\left(x+y\right)^2\)
Vì x,y là các số hữu tỉ nên xy + 1 là bình phương của 1 số hữu tỉ (đpcm)
Câu hỏi của Hoàng Anh Trần - Toán lớp 9 - Học toán với OnlineMath
Em có thể tham khảo tại đây nhé. Chỉ cần thêm kết luận \(\sqrt{1-xy}\in Q\) nên 1 - xy là bình phương của số hữu tỉ.
* Xét y = 0 thì x = 0 => 1 - xy = 1 (là bình phương của một số hữu tỉ)
* Xét y \(\ne\)0 thì chia hai vế của giả thiết cho y4, ta được: \(\frac{x^5}{y^4}+y=\frac{2x^2}{y^2}\Rightarrow\frac{x^6}{y^4}+xy=\frac{2x^3}{y^2}\Rightarrow1-xy=\frac{x^6}{y^4}-\frac{2x^3}{y^2}+1=\left(\frac{x^3}{y^2}-1\right)^2\)(là bình phương của một số hữu tỉ)
Vậy 1 - xy là bình phương của một số hữu tỉ (đpcm)