K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có : \(\overline{ab}-\overline{ba}=\) (10a +b) \(-\) (10b +a) \(=\) 10a + b \(-\) 10b \(-\) a \(=\) 9a \(-\) 9b 

\(=\) 9(a\(-\)b) \(=\) 32(a\(-\)b)

=> a, b ∉ {1;2;3;4;5;6;7;8;9} => 1 ≤ a- b ≤ 8 

Để \(\overline{ab}-\)\(\overline{ba}\) là số chính phương thì a – b = 1; 4

+) a – b = 1 (mà a > b) ta có các số \(\overline{ab}\) là : 98 ; 87 ; 76; 65; 54 ; 43; 32; 21

\(\overline{ab}\) là số nguyên tố nên chỉ có số 43 thoả mãn

+) a – b = 4 (mà a > b) ta có các số \(\overline{ab}\) là : 95 ; 84 ; 73; 62; 51

\(\overline{ab}\) là số nguyên tố nên chỉ có số 73 thoả mãn

Vậy có hai số thoả mãn điều kiện bài toán là 43 và 73

16 tháng 3 2019

Bạn tham khảo link này nhé !

Câu hỏi của Nguyễn Triệu Yến Nhi - Toán lớp 6 - Học toán với OlineMath.

Câu hỏi của Hatsune Miku - Toán lớp 6 - Học toán với OnlineMath.

22 tháng 12 2016

bài 1 : =1

bài 2 ko trả lời được

22 tháng 12 2016

b2

8 so, bn nhe

25 tháng 2 2021

ab - ba = 10a + b - (10b +a) = 9a - 9 b = 9(a - b)= 32 (a - b)

Để ab - ba là số chính phương thì a - b là số chính phương mà a; b là các chữ số

nên a - b chỉ có thể = 1;  4; 9

+) a - b = 1 ; ab nguyên tố   => ab = 43 

+) a - b = 4 => ab= 73  thỏa mãn

+) a- b = 9 => ab = 90 loại

Vậy ab = 43 hoặc 73

15 tháng 8 2019

vì abcd,ab,ac là số nguyên tố nên là số lẻ hay b,c,d lẻ và khác 5. Ta có :

b2 = cd + b - c \(\Rightarrow\)b ( b - 1 ) = cd - c = 10c + d - c = 9c + d \(\ge\)10

\(\Rightarrow\)\(\ge\)\(\Rightarrow\) b = 7 hoặc b = 9

+) b = 7 ta có : 9c + d = 42 \(\Rightarrow\)\(⋮\)\(\Rightarrow\)d = 3 hoặc d = 9

Nếu d = 3 thì c = \(\frac{39}{9}\)( loại )

Nếu d = 9 thì c = \(\frac{33}{9}\)( loại )

+) b = 9 thì 9c + d = 72 \(\Rightarrow\)d = 9 ; c = 7 

Mà a7 và a9 là số nguyên tố thì a = 1

Vậy abcd = 1979

14 tháng 4 2017

Giải:

\(\overline{abcd},\overline{ab}\)\(\overline{ac}\) là các số nguyên tố

\(\Rightarrow b,c,d\) là các số lẻ khác \(5\)

Ta có:

\(b^2=\overline{cd}+b-c\Leftrightarrow b\left(b-1\right)=\overline{cd}-c\)

\(=10c+d-c=10c-c+d=9c+d\)

Do \(9c+d\ge10\) nên \(b\left(b-1\right)\ge10\)

\(\Rightarrow b\ge4\). Do đó \(\left[{}\begin{matrix}b=7\\b=9\end{matrix}\right.\)

Ta có các trường hợp sau:

\(*)\) Nếu \(b=7\) ta có:

\(9c+d=42⋮3\Rightarrow d⋮3\) \(\Rightarrow\left[{}\begin{matrix}d=3\\d=9\end{matrix}\right.\)

Với \(d=3\Rightarrow9c=39\Rightarrow\) Không tồn tại \(c\in N\)

Với \(d=9\Rightarrow9c+d⋮9\) còn \(42\) \(⋮̸\) \(9\) (loại)

\(*)\) Nếu \(b=9\) ta có:

\(9c+d=72⋮9\Rightarrow d⋮9\Rightarrow d=9\)

\(9c+9=72\Rightarrow9c=63\Rightarrow c=7\)

\(\overline{ab}=\overline{a9}\) là số nguyên tố \(\Rightarrow a\ne3;6;9;4\)

\(\overline{ac}=\overline{a7}\) là số nguyên tố \(\Rightarrow a\ne2;5;7;8\)

Mặt khác \(a\ne0\Rightarrow a=1\)

Vậy số cần tìm là \(1979\) (thỏa mãn số nguyên tố)

14 tháng 4 2017

giống hệt bài giải mẫu trên mạng

21 tháng 10 2016

Áp dụng tính chất của dãy tỉ số = nhau ta có:

\(\frac{ab}{bc}=\frac{b}{c}=\frac{ab-b}{bc-c}=\frac{\left(10a+b\right)-b}{\left(10b+c\right)-c}=\frac{10a}{10b}=\frac{a}{b}\)

\(\Rightarrow b^2=a.c\)

Do ab nguyên tố nên b lẻ khác 5 \(\Rightarrow b\in\left\{1;3;7;9\right\}\)

+ Với b = 1 thì 12 = a.c = 1 => a = c = 1, vô lý vì \(a\ne b\ne c\)

+ Với b = 3 thì 32 = a.c = 9 \(\Rightarrow\left[\begin{array}{nghiempt}a=c=3\\a=1;c=9\\a=9;c=1\end{array}\right.\), ta chọn được 1 cặp giá trị (a;c) thỏa mãn \(a\ne b\ne c\) và ab nguyên tố là (1;9)

+ Với b = 7 thì 72 = a.c = 49 => a = c = 7, vô lý vì \(a\ne b\ne c\)

+ Với b = 9 thì 92 = a.c = 81 => a = c = 9, vô lý vì \(a\ne b\ne c\)

Vậy abc = 139

21 tháng 10 2016

Ta có:\(\frac{ab}{bc}=\frac{b}{c}\)(ab,bc có dấu gạch ngang trên đầu)

\(\Rightarrow\frac{10a+b}{10b+c}=\frac{b}{c}\)

\(\Rightarrow\left(10a+b\right)c=\left(10b+c\right)b\)

\(\Rightarrow10ac+bc=10b^2+bc\)

\(\Rightarrow10ac=10b^2\)

\(\Rightarrow ac=b^2\)

\(\Rightarrow abc=\) bao nhiêu tự tính(tui quên các chữ số đôi một là như thế nào rồi và abc có dấu gạch ngang trên đầu)

 

30 tháng 3 2023

Đúng mình sẽ like nha