K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 11 2016

Ta Có :

    A =20+21+22+23+.....+22016

=>A = 20(1+2+4) + 23(1+2+4) + ...... + 22014(1+2+4)

=>A = 1.7 + 23.7 + ....... +22014 . 7

=>A = 7.(1+23+......+22014)

=> A chia hết cho 7 (ĐPCM)

Đúng thì cho tích nha bạn !

19 tháng 12 2016

Số dư là 0

A=(1+2+2^2)+2^3(1+2+2^2)+...+2^2013(1+2+2^2)+2^2016

=7(1+2^3+...+2^2013)+2^2016

Vì 2^2016 chia 7 dư 1

nên A chia 7 dư 1

Ta có A=20+21+22+23+...2100

2A=21+22+...+2101

2A-A=(21+22+...+2100)-(20+21+...+2100)

A=2101-1

Mà 2101-1=(........02)-1=........01 chia 100 dư 1

Chúc bạn học tốt.

19 tháng 4 2018

Ta có

  2 1 + 2 2 + 2 3 + 2 4 + 2 5 + 2 6 + 2 7 +...+ 2 98 + 2 99 + 2 100

= 2 1 + ( 2 2 + 2 3 + 2 4 ) + ( 2 5 + 2 6 + 2 7 ) +...+ ( 2 98 + 2 99 + 2 100 )

= 2 + 2 2 1 + 2 + 2 2 + 2 5 1 + 2 + 2 2 + . . . + 2 98 1 + 2 + 2 2

= 2 + 2 2 . 7 + 2 5 . 7 + . . . + 2 98 . 7 = 2 + 7 2 2 + 2 5 + . . . + 2 98

Mà  7 . 2 2 + 2 5 + . . . + 2 98 ⋮ 7  

Nên  2 + 7 2 2 + 2 5 + . . . + 2 98 : 7   d ư   2

17 tháng 10 2019

Đề kiểm tra Toán 6 | Đề thi Toán 6

3 tháng 10 2021

giúp mik với bucminh

3 tháng 10 2021

\(A=2^0+2^1+2^2+...+2^{59}\)

\(=2^0\left(1+2+2^2\right)+2^3\left(1+2+2^2\right)+...+2^{57}\left(1+2+2^2\right)\)

\(=2^0.7+2^3.7+...+2^{57}.7\)

\(=7\left(2^0+2^3+...+2^{57}\right)⋮7\)

 

21 tháng 2 2017

so du la 0

21 tháng 2 2017

A=20+21+22+23+(24+25+..+31) + (32+33+...+39)+...+ (21009+21010+...+21015)+21016

A=80+6+21016+(24+25+..+31) + (32+33+...+39)+...+ (21009+21010+...+21015)

Ta thấy mỗi dấu ngoặc là 8 số tự nhiên liên tiếp có số dư lần lượt là 0,1,2,..,7 có 0+1+2+...+7=28

Số số hạng được chứa trong dấu ngoặc là: (21015-24):1+1=20992 số

Số cặp đó là: 20992:8=2624 Cặp

Do vậy số dư của A chia 8 bằng số dư của B=6+28.2624 (do 80 và 21016 \(⋮\)8)

Mà 2624\(⋮\)8

Nên số dư của A cho 8 là 6

P/S: Bài này em có thể tính tổng ra rồi chia nhưng sẽ cồng kềnh

24 tháng 8 2021

`A=2^{0}+2^{1}+2^{2}+....+2^{99}`

`=(1+2+2^{2}+2^{3}+2^{4})+(2^{5}+2^{6}+2^{7}+2^{8}+2^{9})+......+(2^{95}+2^{96}+2^{97}+2^{97}+2^{99})`

`=(1+2+2^{2}+2^{3}+2^{4})+2^{5}(1+2+2^{2}+2^{3}+2^{4})+.....+2^{95}(1+2+2^{2}+2^{3}+2^{4})`

`=31+2^{5}.31+....+2^{95}.31`

`=31(1+2^{5}+....+2^{95})\vdots 31`

24 tháng 8 2021

\(A=2^0+2^1+2^2+2^3+2^4+2^5+2^6+...+2^{99}\)

\(=\left(2^0+2^1+2^2+2^3+2^4\right)+2^5\left(2^0+2^1+2^2+2^3+2^4\right)+...+2^{95}\left(2^0+2^1+2^2+2^3+2^4\right)=31+31.2^5+...+31.2^{95}=31\left(1+2^5+...+2^{95}\right)⋮31\)