Cho hai số tự nhiên \(a,b\)>1 . Chứng minh rằng A = \(a\left(7^a-a^2\right)+b\left(7^b-b^2\right)\)chia hết cho 6
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
d) Ta có: \(n^2+5n+9⋮n+3\)
\(\Leftrightarrow n^2+3n+2n+6+3⋮n+3\)
\(\Leftrightarrow n\left(n+3\right)+2\left(n+3\right)+3⋮n+3\)
mà \(n\left(n+3\right)+2\left(n+3\right)⋮n+3\)
nên \(3⋮n+3\)
\(\Leftrightarrow n+3\inƯ\left(3\right)\)
\(\Leftrightarrow n+3\in\left\{1;-1;3;-3\right\}\)
hay \(n\in\left\{-2;-4;0;-6\right\}\)
Vậy: \(n\in\left\{-2;-4;0;-6\right\}\)
d) Ta có: n2+5n+9⋮n+3n2+5n+9⋮n+3
⇔n2+3n+2n+6+3⋮n+3⇔n2+3n+2n+6+3⋮n+3
⇔n(n+3)+2(n+3)+3⋮n+3⇔n(n+3)+2(n+3)+3⋮n+3
mà n(n+3)+2(n+3)⋮n+3n(n+3)+2(n+3)⋮n+3
nên 3⋮n+33⋮n+3
⇔n+3∈Ư(3)⇔n+3∈Ư(3)
⇔n+3∈{1;−1;3;−3}
Ta có : a2 + 8a + 7 = ( a2 + 2a + 1 ) + ( 6a + 6 )
= [ a2 + a + a + 1 ] + ( 6a + 6 )
= [ a( a + 1 ) + ( a + 1 ) ] + 6( a + 1 )
= ( a + 1 ) ( a + 1 ) + 6 ( a + 1 )
= ( a + 1 ) [ ( a + 1 ) + 6 ]
= ( a + 1 ) ( a + 7 )
Vì a + 1 chia hết cho a + 1 => ( a + 1 ) ( a + 7 ) chia hết cho a + 1
=> a2 + 8a + 7 chia hết cho a + 1 ( đpcm )
Theo bài ra ta có : [a2+8a+7] chia hết cho [a+1] =>[a2+8a+7]=[2a+8a+7]=[10a+7] chia hết cho 10[a+1] =>10[a+1] - [10a+7] chia hết cho a+1 =>10a+10-10a-7 chia hết cho a+1 =>3 chia hết cho a+1 =>a+1 thuộc Ư(3)={1;3} => Ta có : a+1 = 1 =>a+0 ; a+1=3 =>a=2 (nhớ xuống dòng bạn nhé) Vậy [a2+8a+7] chia hết cho [a+1]
Nhận thấy bất kì binh phương số nào chia cho 7 chỉ có thể dư 0,1,6 (có thể đặt 7k+1;7k+2... để CM)
TH1: Nếu có bất kì số chia hết cho 7 thì hiển nhiên chia hết cho 7
TH2: Nếu ko có số nào chia hết cho 7, theo Dirichlet thì chắc chắn trong a^2,b^2,c^2 có 2 số cùng số dư khi chia cho 7 nên 1 trong 3 (a^2-b^2)... sẽ có 1 số chia hết cho 7 -> chia hết cho 7
b) Phân tích ra thừa số : 5040 = 24 . 32 . 5 . 7
Phân tích : A = n . [ n2 . ( n2 - 7 )2 - 36 ] = n . [ ( n3 - 7n )2 - 62 ]
= n . ( n3 - 7n - 6 ) . ( n3 - 7n + 6 )
Ta lại có : n3 - 7n - 6 = ( n + 1 ) ( n + 2 ) ( n - 3 )
n3 - 7n + 6 = ( n - 1 ) ( n - 2 ) ( n + 3 )
Do đó : A = ( n - 3 ) ( n - 2 ) ( n - 1 ) n ( n + 1 ) ( n + 2 ) ( n + 3 )
Ta thấy A là tích của 7 số nguyên liên tiếp nên :
- tồn tại 1 bội số của 5 ( nên A chia hết cho 5 )
- tồn tại 1 bội số của 7 ( nên A chia hết cho 7 )
- tồn tại 2 bội số của 3 ( nên A chia hết cho 9 )
- tồn tại 3 bội số của 2, trong đó có 1 bội số của 4 ( nên A chia hết cho 16 )
A chia hết cho các số 5,7,9,16 đôi một nguyên tố cùng nhau nên A chia hết cho 5.7.9.16 = 5040
chịu thôi, tôi lớp 4 mà