a) Cho 2a + 3b chia hết cho 5 . Chứng minh ( 2a + 5b ) chia hết cho 5
b) Cho 7a + b chia hết cho 11 . Chứng minh ( 2a + 5b ) chia hết cho 11
ai giải nhanh mình tick cho nhớ đầy đủ đó
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu thứ 2
a - 5b chia hết cho 17 thì 10a-50b chia hết cho 17
10a-50b=10a+b-51b
51b chia hết cho 17 nên 10a+b chia hết cho 17
51a : 17
=> 51a - a + 5b : 17
=> 50a + 5b : 17
=> 5 ( 10a + b ) : 17
=> 10a + b : 17
Có: a+5b chia hết cho 7
=> 2.(a+5b)\(⋮\) 7
\(\Leftrightarrow2a+10b⋮7\)
\(\Rightarrow2a+10-7b\) chia hết cho 7 ( do 7b chia hết cho 7 )
\(\Leftrightarrow2a+3b\) chia hết cho 7
=> điều phải chứng minh
Giả sử a=7; b=1 => 2a-3b=2.7-3.1=11 chia hết cho 11
=> 3a-b=3.7-1=20 không chia hết cho 11 => đề bài sai nếu 2a-3b chia hết cho 11 thì 3a+b chia hết cho 11 mới đúng
+ 2a-3b chia hết cho 11 => 4(2a-3b) chia hết cho 11 => 4(2a-3b)=8a-12b=11a-11b-3a-b=11(a-b)-(3a+b) chia hết cho 11
Mà 11(a-b) chia hết cho 11 => 3a+b chia hết cho 11
+ 3a+b chia hết cho 11 mà a chia hết cho 11 => 3a chia hết cho 11 => b chia hết cho 11
\(P⋮11\Leftrightarrow\orbr{\begin{cases}2a+5b⋮11\\a+8b⋮11\end{cases}}\)
\(+,2a+5b⋮11\Rightarrow6\left(2a+5b\right)-22b-11a⋮11\Leftrightarrow a+8b⋮11\Rightarrow P⋮121\)
\(+,a+8b⋮11\Rightarrow\frac{a+11a+8b+22b}{6}⋮11\Leftrightarrow2a+5b⋮11\Rightarrow P⋮121\)
ta có điều phải chứng minh