K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 5 2015

a, b, x, y, z = 1

1\(^2\)+ 1\(^2\)= 1\(^2\)+ 1\(^2\)+ 1\(^2\)

Vì 1 + 1 + 1 + 1 + 1 = 5 là số nguyên tố nên a + b + x + y + z là số nguyên tố.

Vậy, a + b + x + y + z là số nguyên tố

30 tháng 5 2015

Lê Duy Khang à làm sao 1+  1= 1 + 1 + 1

2 # 3

30 tháng 5 2015

Vì a,b,x,y,z là các số tự nhiên khác 0.

=>a,b,x,y,z >=1

=>S=a+b+x+y+z >=1+1+1+1+1=5

=>S >=5>2

=>S>2

Ta có:          a^2+b^2=x^2+y^2+z^2

=>a^2+b^2+a^2+b^2=a^2+b^2+x^2+y^2+z^2

=>          2.(a^2+b^2)=a^2+b^2+x^2+y^2+z^2

Lại có:

           S= a+b+x+y+z

=>   S^2=(a+b+x+y+z).(a+b+x+y+z)

=>  S^2=a.(a+b+x+y+z)+b.(a+b+x+y+z)+x.(a+b+x+y+z)+y.(a+b+x+y+z)+

z.(a+b+x+y+z)

=>  S^2=a^2+a.b+a.x+a.y+a.z+b.a+b^2+b.x+b.y+b.z+x.a+x.b+x^2+x.y+x.z+y.a+

y.b+y.x+y^2+y.z+z.a+z.b+z.x+z.y+z^2

=>  S^2=(a^2+b^2+x^2+y^2+z^2)+(a.b+b.a)+(a.x+x.a)+(a.y+y.a)+(a.z+z.a)+

(b.x+x.b)+(b.y+y.b)+(b.z+z.b)+         (x.y+y.x)+(x.z+z.x)+(y.z+z.y)

=>  S^2=2.(a^2+b^2)+2.a.b+2.a.x+2.a.y+2.a.z+2.b.x+2.b.y+2.b.z+2.x.y+2.x.z+2.y.z

=>  S^2=2.(a^2+b^2+a.b+a.x+a.y+a.z+b.x+b.y+b.z+x.y+x.z+y.z)

=>  S^2 chia hết cho 2.

Giả sử S là số nguyên tố mà S>2.

=>S không chia hết cho 2.

=>S^2 không chia hết cho 2.

=>Vô lí.

=>S không phải là số nguyên tố.

Vậy S không phải là số nguyên tố.

 

13 tháng 9 2017

không

16 tháng 2 2018

Chọn đáp án D

16 tháng 3 2017

Đáp án A. 

12 tháng 3 2023

Áp dụng tính chất các dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}=\dfrac{x+y+z}{a+b+c}=\dfrac{x+y+z}{1}\)

\(x=a\left(x+y+z\right)=x^2=a^2.\left(x+y+z\right)^2\)

\(y=b\left(x+y+z\right)=y^2=b^2\left(x+y+z\right)^2\)

\(z=c\left(x+y+z\right)=z^2=c^2.\left(x+y+z\right)^2\)

\(\Rightarrow x^2+y^2+z^2=a^2\left(x+y+z\right)^2+b^2\left(x+y+z\right)^2+c^2\left(x+y+z\right)^2\)

                         \(=\left(x+y+z\right)^2\left(a^2+b^2+c^2\right)=\left(x+y+z\right)^2\) (do \(a^2+b^2+c^2=1\))

 

12 tháng 3 2023

https://lazi.vn/edu/exercise/864720/cho-a-b-c-a2-b2-c2-1-va-x-a-y-b-z-c-chung-minh-rang-x-y-z2-x2-y2-z2

liệt phím? Mù mắt?

1. Tìm những cặp số (x,y) thoả mãn pt: a) x² - 4x +y - 6√(y) + 13 = 0 b) (xy²)² - 16xy³ + 68y² -4xy + x² = 0 c) x² - x²y - y + 8x + 7 = 0 ngiệm (x,y) nào đạt y max 2. Giả sử x1, x2 là nghiệm của pt: x² - 6x + 1 =0. CM với mọi số nguyên dương n thì S(n) = x1ⁿ +x2ⁿ là số nguyên và không chia hết cho 5 3. Cho f(x) là một đa thức tuỳ ý với các hệ số nguyên. CM: f(a) - f(b) chia hết (a - b) với mọi số nguyên a,b 4....
Đọc tiếp

1. Tìm những cặp số (x,y) thoả mãn pt: 
a) x² - 4x +y - 6√(y) + 13 = 0 
b) (xy²)² - 16xy³ + 68y² -4xy + x² = 0 
c) x² - x²y - y + 8x + 7 = 0 ngiệm (x,y) nào đạt y max 
2. Giả sử x1, x2 là nghiệm của pt: x² - 6x + 1 =0. CM với mọi số nguyên dương n thì S(n) = x1ⁿ +x2ⁿ là số nguyên và không chia hết cho 5 
3. Cho f(x) là một đa thức tuỳ ý với các hệ số nguyên. CM: f(a) - f(b) chia hết (a - b) với mọi số nguyên a,b 
4. Chứng minh tồn tại đa thức p(x) với hệ số nguyên thoả p(3) = 10, p(7) = 24 
5. Giả sử x, y, z là những số tự nhiên thoả x² + y² = z². Chứng minh xyz chia hết cho 60 
6. Cho x,y,z là các số nguyên thoả (x-y)(y-z)(z-x) = x + y + z. CM: x +y + z chia hết cho 27 
7. Với 4 số nguyên a,b,c,d .CM:(a-b)(a-c)(a-d)(b-c)(b-d)(c-d) chia hết cho 12. 
8. Chứng minh nếu a² + b² chia hết cho 21 thì cũng chia hết cho 441 
9. Tìm tất cả số nguyên tố vừa là tổng của 2 số nguyên tố, vừa là hiệu của 2 số nguyên tố 
10. Viết số 100 thành tổng các số nguyên tố khác nhau 
11. Tìm các nghiệm nguyên dương x! + y! = (x + y)! 
12. Tìm các số tự nhiên n sao cho 2ⁿ +3ⁿ = 35 
13. Tìm 3 số nguyên dương sao cho tích của chúng gấp đôi tổng của chúng 
14. Tìm 4 số nguyên dương sao cho tổng và tích của chúng bằng nhau (Tương tự với 3 số nguyên dương) 
15. Tìm 3 số nguyên dương x,y,z sao cho xy + 1 chia hết cho z; xz +1 chia hết cho y; yz + 1 chia hết cho x 
16. a) CM x² + y² = 7z² 
b) CM số 7 ko viết được dưới dạng tổng bình phương của 2 số hửu tỉ

0