Cho tam giác ABC vuông tại A. Tia phân giác của góc B cắt AC tại D. Trên tia BC lấy điểm M sao cho BM=BA. Chứng minh DM vuông góc với BC.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có hình vẽ:
Vì tia phân giác góc B cắt AC tại D nên \(ABD=DBM=\frac{ABM}{2}\)
Xét Δ ABD và Δ MBD có:
AB = BM (gt)
ABD = DBM (chứng minh trên)
BD là cạnh chung
Do đó, Δ ABD = Δ MBD (c.g.c)
=> BAD = BMD = 90o (2 góc tương ứng)
=> \(DM\perp BM\) hay \(DM\perp BC\left(đpcm\right)\)
a: Xét ΔABD và ΔMBD có
BA=BM
\(\widehat{ABD}=\widehat{MBD}\)
BD chung
Do đó: ΔABD=ΔMBD
b: Ta có: ΔABD=ΔMBD
nên DA=DM
Ta có: ΔABD=ΔMBD
nên \(\widehat{BAD}=\widehat{BMD}=90^0\)
hay DM⊥BC
a) Ta có: ΔABC vuông tại A(gt)
nên \(\widehat{ABC}+\widehat{ACB}=90^0\)(hai góc nhọn phụ nhau)
\(\Leftrightarrow\widehat{ACB}=90^0-\widehat{ABC}\)
\(\Leftrightarrow\widehat{ACB}=90^0-60^0\)
hay \(\widehat{ACB}=30^0\)
Vậy: \(\widehat{ACB}=30^0\)
b) Xét ΔADB và ΔEDB có
BA=BE(gt)
\(\widehat{ABD}=\widehat{EBD}\)(BD là tia phân giác của \(\widehat{ABE}\))
BD chung
Do đó: ΔADB=ΔEDB(c-g-c)
nên \(\widehat{BAD}=\widehat{BED}\)(hai góc tương ứng)
mà \(\widehat{BAD}=90^0\)(ΔABC vuông tại A)
nên \(\widehat{BED}=90^0\)
hay DE\(\perp\)BC(đpcm)
c) Ta có: BE+EC=BC(E nằm giữa B và C)
BA+AM=BM(A nằm giữa B và M)
mà BE=BA(ΔBED=ΔBAD)
và BC=BM(gt)
nên EC=AM
Xét ΔADM vuông tại A và ΔEDC vuông tại E có
DA=DE(ΔDAB=ΔDEB)
AM=EC(cmt)
Do đó: ΔADM=ΔEDC(hai cạnh góc vuông)
nên \(\widehat{ADM}=\widehat{EDC}\)(hai góc tương ứng)
mà \(\widehat{EDC}+\widehat{ADE}=180^0\)(hai góc kề bù)
nên \(\widehat{ADM}+\widehat{ADE}=180^0\)
\(\Leftrightarrow\widehat{EDM}=180^0\)
hay E,D,M thẳng hàng(đpcm)
ΔBMC cân tại B
mà BH là phân giác
nên BH vuông góc MC
Xét ΔBMC có
CA,BH là đường cao
CA cắt BH tại H
=>H là trực tâm
=>MH vuông góc BC
- Xét \(\Delta ABD\) và \(\Delta MBD\) ta có:
BD là cạnh chung
góc ABD = góc MBD
BA = BM ( gt )
=> \(\Delta ABD=\Delta MBD\) ( Trường hợp c-g-c )
=> góc A = góc BMD ( Cặp góc tương ứng )
Góc A = 90o => góc BMD = 90o
<=> DM vuống góc với BC.