Chứng tỏ rằng
Tổng của 2 số chẵn liên tiếp ko là bội của 4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi 2 số lẻ liên tiếp lần lượt là 2k+1 và 2k+3
ta có 2k+1+2k+3=4k+4=4(k+1) chia hết cho nên là bộ của 4 hay tổng của hai số le liên tiếp là bội của 4
hai số lẻ liên tiếp này là số nguyên nếu là số thập phân hay phân số thì chưa chắc
Gọi 2 số lẻ liên tiếp là 2k + 1 và 2k + 3 ( k thuộc N )
Ta có: 2k + 1 + 2k + 3
= 2 . 2k + 4
= 4k + 4
Ta có: 4k chia hết cho 4
4 chia hết cho 4
Suy ra, 4k + 4 chia hết cho 4.
Vậy tổng hai số lẻ liên tiếp là bội của 4
Gọi 2 số chẵn liên tiếp là 2.k và 2.k +2 ( k thuộc N)
· Nếu k là số lẻ suy ra k =2.q+1.( q thuộc N)
Khi đó: 2.k +2= 2. (2.q+1) +2 =2.2.q +2+2 = 4.q +4 chia hết cho 4
· Nếu k là số chẵn suy ra k =2.q ( q thuộc N)
Khi đó: 2.k = 2. 2.q = 4.q chia hết cho 4
Vậy trong hai số chẵn liên tiếp luôn có một số chia hết cho 4
Gọi 2 số chẵn liên tiếp có dạng 2k và 2k+2 ( k thộc N )
+Nếu k = 2q ( q thuộc N ) thì 2k = 2.2q = 4q chia hết cho 4 hay là bội của 4 (1)
+Nếu k = 2q+1 ( q thuộc N ) thì 2k+2 = 2.(2q+1)+2 = 4q+4 = 4.(q+1) chia hết cho 4 hay là bội của 4 (2)
Từ (1) và (2) => ĐPCM
Câu 1: a) Gọi 3 số đó là a ;a+1;a+2
Ta có: a+a+1+a+2=3a+3
3 chia hết cho 3 => 3a chia hết cho 3
=> 3a+3 chia hết cho 3
=> Tổng của 3 số tự nhiên liên tiếp luon chia hết cho 3
b) Gọi 5 số đó là a;a+1;a+2;a+3;a+4
Ta có: a+a+1+a+2+a+3+a+4 =5a+5
5 chia hết cho 5 => 5a chia hết cho 5
=> Tổng của 5 số tự nhiên liên tiếp luôn chia hết cho 5
Câu 2 :Tụ làm nhé , mk chịu lun à
Ta có tổng 4 số liên tiếp là :
a + ( a + 1 ) + ( a + 2 ) + ( a + 3 )
= a + a + 1 + a + 2 + a + 3
= 4a + 6 \(⋮\)2
nên 4 liên tiếp là 1 số chẵn .
Gọi 2 số đó là a và a+ 2
Ta có: a + a + 2 = a x 2 + 2
= (a+1) x 2
Mà a chẵn =>a + 1 lẻ
=> (a+1) x 2 không chia hết cho 4