(2x-1)(3-x)+(x-2)(x+3)=(1-x)(x-2)
Giải chi tiết cho mình với ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
<=> 2x^2 +x-4x-2-5x-15=2x^2-6x+4+8x-2-2x
2x^2-8x-17-2x^2-2=0
-8x-19=0
x=-19/8
\(\left(3-2x\right)^2=\left(x-2\right)\left(2x-3\right)\)
\(\Leftrightarrow\left(3x-2\right)^2-\left(x-2\right)\left(2x-3\right)=0\)
\(\Leftrightarrow9x^2-12x+4-\left(2x^2-7x+6\right)=0\)
\(\Leftrightarrow9x^2-12x+4-2x^2+7x-6=0\)
\(\Leftrightarrow7x^2-5x-2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{2}{7}\end{matrix}\right.\)
Vậy \(S=\left\{1;-\dfrac{2}{7}\right\}\)
`(3-2x)^2=(x-2)(2x-3)`
`<=>(2x-3)^2 -(x-2)(2x-3)=0`
`<=> (2x-3)(2x-3-x+2)=0`
`<=> (2x-3)(x-1)=0`
\(< =>\left[{}\begin{matrix}2x-3=0\\x-1=0\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=1\end{matrix}\right.\)
\(\left|2x-1\right|=\dfrac{3}{2}\\ \Rightarrow\left[{}\begin{matrix}2x-1=\dfrac{3}{2}\\2x-1=-\dfrac{3}{2}\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=\dfrac{5}{4}\\x=-\dfrac{1}{4}\end{matrix}\right.\)
Thay \(x=\dfrac{5}{4}\) vào D ta có:
\(D=4x+3=4.\dfrac{5}{4}+3=5+3=8\)
Thay \(x=-\dfrac{1}{4}\) vào D ta có:
\(D=4.\dfrac{-1}{4}+3=-1+3=2\)
Để \(D=\dfrac{3}{2}\)
\(\Leftrightarrow4x+3=\dfrac{3}{2}\\ \Leftrightarrow4x=-\dfrac{3}{2}\\ \Leftrightarrow x=-\dfrac{3}{8}\)
`(x+1)(x+3)=2x^2-2`
`<=>x^2+x+3x+3=2x^2-2`
`<=>x^2-4x-5=0`
`<=>x^2-5x+x-5=0`
`<=>x(x-5)+(x-5)=0`
`<=>(x-5)(x+1)=0`
`<=>` $\left[ \begin{array}{l}x=5\\x=-1\end{array} \right.$
Vậy `S={5,-1}`
Ta có: \(\left(x+1\right)\left(x+3\right)=2x^2-2\)
\(\Leftrightarrow\left(x+1\right)\left(x+3\right)-2x^2+2=0\)
\(\Leftrightarrow\left(x+1\right)\left(x+3\right)-2\left(x^2-1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x+3\right)-2\left(x+1\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left[x+3-2\left(x-1\right)\right]=0\)
\(\Leftrightarrow\left(x+1\right)\left(x+3-2x+2\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(5-x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\5-x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=5\end{matrix}\right.\)
Vậy: S={-3;5}
a.
\(2x-x^2+7=-\left(x^2-2x+1\right)+8=-\left(x-1\right)^2+8\le8\)
\(\Rightarrow2+\sqrt{2x-x^2+7}\le2+\sqrt{8}=2+2\sqrt{2}\)
\(\Rightarrow\dfrac{3}{2+\sqrt{2x-x^2+7}}\ge\dfrac{3}{2+2\sqrt{2}}=\dfrac{3\sqrt{2}-3}{2}\)
\(A_{min}=\dfrac{3\sqrt{2}-3}{2}\) khi \(x=1\)
b. ĐKXĐ: \(x\le1\)
\(B=-\left(1-x-\sqrt{2\left(1-x\right)}+\dfrac{1}{2}-\dfrac{1}{2}-1\right)\)
\(B=-\left(1-x-\sqrt{2\left(1-x\right)}+\dfrac{1}{2}\right)+\dfrac{3}{2}\)
\(B=-\left(\sqrt{1-x}-\dfrac{\sqrt{2}}{2}\right)^2+\dfrac{3}{2}\le\dfrac{3}{2}\)
\(B_{max}=\dfrac{3}{2}\) khi\(x=\dfrac{1}{2}\)
a) Ta có: \(2x\left(x+3\right)-3\left(x^2+1\right)=x+1-x\left(x-2\right)\)
\(\Leftrightarrow2x^2+6x-3x^2-3=x+1-x^2+2x\)
\(\Leftrightarrow-x^2+6x-3=-x^2+3x+1\)
\(\Leftrightarrow-x^2+6x-3+x^2-3x-1=0\)
\(\Leftrightarrow3x-4=0\)
\(\Leftrightarrow3x=4\)
\(\Leftrightarrow x=\frac{4}{3}\)
Vậy: \(S=\left\{\frac{4}{3}\right\}\)
b) Ta có: \(3x\left(x-2\right)-x\left(1+3x\right)=14\)
\(\Leftrightarrow3x^2-6x-x-3x^2-14=0\)
\(\Leftrightarrow-7x-14=0\)
\(\Leftrightarrow-7x=14\)
hay x=-2
Vậy: S={-2}
c) Ta có: \(2x\left(x-5\right)-x\left(3+2x\right)=26\)
\(\Leftrightarrow2x^2-10x-3x-2x^2=26\)
\(\Leftrightarrow-13x=26\)
hay x=-2
Vậy: S={-2}
\(\dfrac{2x-2\sqrt{x}+2}{x\sqrt{x}+1}=\dfrac{2}{\sqrt{x}+1}\)
(2x-1)(3-x)+(x-2)(x+3)=(1-x)(x-2)
<=> 6x-3-2x^2+x+x^2-2x+3x-6=x-x^2-2+2x
<=>-x^2+8x-9=-x^2+3x-2
<=>x^2-x^2+8x-3x=9-2
<=>5x=7
<=>x=7/5