\(P=\frac{1}{1\cdot2\cdot3\cdot\text{4}}+\frac{1}{2\cdot3\cdot4\cdot5}+.........+\frac{1}{102\cdot103\cdot104\cdot105}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=\(\frac{1}{2}\).\(\frac{2}{3}\)....\(\frac{2012}{2013}\)=\(\frac{1}{2013}\)
B=\(\frac{2012}{2012.2013}\)=\(\frac{1}{2013}\)
vậy A=B
\(\frac{2}{n\left(n+1\right)\left(n+2\right)}=\frac{n+2-n}{n\left(n+1\right)\left(n+2\right)}=\frac{n+2}{n\left(n+1\right)\left(n+2\right)}-\frac{n}{n\left(n+1\right)\left(n+2\right)}=\frac{1}{n\left(n+1\right)}-\frac{1}{n\left(n+2\right)}\)
\(\Rightarrow\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{98.99.100}=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{98.99}-\frac{1}{99.100}\)
\(=\frac{1}{1.2}-\frac{1}{99.100}\)
\(\Rightarrow\frac{1}{1.2.3}+...+\frac{1}{98.99.100}=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{99.100}\right)\)
\(\Rightarrow k=2\)
\(\Rightarrow\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{98.99.100}\right).y=\frac{49}{100}\)
\(\Leftrightarrow\left(\frac{3-1}{1.2.3}+\frac{4-2}{2.3.4}+\frac{5-3}{3.4.5}+...+\frac{100-98}{98.99.100}\right).y=\frac{49}{100}\)
\(\Leftrightarrow\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{98.99}-\frac{1}{99.100}\right).y=\frac{49}{100}\)
\(\Leftrightarrow\left(\frac{1}{1.2}-\frac{1}{99.100}\right).y=\frac{49}{100}\Leftrightarrow\left(\frac{99.50-1}{99.100}\right).y=\frac{49}{100}\)
\(\Leftrightarrow\left(\frac{99.50-1}{99}\right).y=49\Leftrightarrow\left(99.50-1\right).y=99.49\Rightarrow y=\frac{99.49}{99.50-1}\)
X=2 nhé bạn.....đúng đó, vòng 12 mk 300 mà cx gặp câu này!!! Tick nha
\(A=\frac{1}{1.2.3.4}+\frac{1}{2.3.4.5}+\frac{1}{3.4.5.6}+...+\frac{1}{27.28.29.30}\)
\(A=\frac{1}{4.6}+\frac{1}{10.12}+\frac{1}{18.20}+...+\frac{1}{810.812}\)
.......
~ Chúc học tốt ~
Ai ngang qua xin để lại 1 L - I - K - E
\(A=\frac{1}{1.2.3.4}+\frac{1}{2.3.4.5}+.....+\frac{1}{27.28.29.30}\)
\(3A=3.\left(\frac{1}{1.2.3.4}+\frac{1}{2.3.4.5}+......+\frac{1}{27.28.29.30}\right)\)
\(3A=\frac{3}{1.2.3.4}+\frac{3}{2.3.4.5}+..........+\frac{3}{27.28.29.30}\)
\(3A=\frac{1}{1.2.3}-\frac{1}{2.3.4}+\frac{1}{2.3.4}-\frac{1}{3.4.5}+........+\frac{1}{27.28.29}-\frac{1}{28.29.30}\)
\(3A=\frac{1}{1.2.3}-\frac{1}{28.29.30}\)
\(3A=\frac{1}{6}-\frac{1}{24360}\)
\(3A=\frac{1353}{8120}\)
\(A=\frac{1353}{8120}:3\)
\(A=\frac{451}{8120}\)