K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 6 2022

A B C E D P Q O H K I

1/ E và D cùng nhìn BC dưới 2 góc bằng nhau và bằng 90 độ nên E và D cùng nằm trên đường tròn đường kính BD

=> BCDE là tứ giác nội tiếp

Xét tg vuông ABD và tg vuông ACE có

\(\widehat{ABP}=\widehat{ACQ}\) (cùng phụ với \(\widehat{BAC}\) ) (1)

\(sđ\widehat{ABP}=\dfrac{1}{2}sđ\) cung AP (góc nội tiếp) (2)

\(sđ\widehat{ACQ}=\dfrac{1}{2}sđ\) cung AQ (góc nội tiếp) (3)

Từ (1) (2) (3) => sđ cung AP = sđ cung AQ

2/ 

Ta có 

\(sđ\widehat{ABP}=\dfrac{1}{2}sđ\) cung AP (góc nt) (1)

\(sđ\widehat{ABQ}=\dfrac{1}{2}sđ\) cung AQ (góc nt) (2)

Mà sđ cung AP = sđ cung AQ (cmt) (3)

Từ (1) (2) (3) \(\Rightarrow\widehat{ABP}=\widehat{ABQ}\) => BA là phân giác của \(\widehat{PBQ}\)

Mà \(AB\perp CQ\) => BA là đường cao của tg HBQ

=> tg HBQ cân tại B (trong tg đường phân giác đồng thời là đường cao thì tg đó là tg cân)

=> EQ=EH (trong tg cân đường cao hạ từ đỉnh tg cân đồng thời là đường trung tuyến) => E là trung điểm của HQ (đpcm)

Chứng minh tương tự ta cũng có D là trung điểm của HP

=> ED là đường trung bình của tg HPQ => ED//PQ

Nối AO cắt (O) tại K ta có

sđ cung AQK = sđ cung APK (nửa đường tròn)

sđ cung AQ = sđ cung AP (cmt)

=> sđ cung QBK = sđ cung PCK => KQ=KP (hai cung có số đo bằng nhau thì hai dây trương cung tương ứng có độ dài bằng nhau) => tg KPQ cân tại K

Ta có

\(sđ\widehat{AKQ}=\dfrac{1}{2}sđ\) cung AQ (góc nt)

\(sđ\widehat{AKP}=\dfrac{1}{2}sđ\) cung AP (góc nt)

Mà sđ cung AQ = sđ cung AP (cmt)

=> \(\widehat{AKQ}=\widehat{AKP}\) => AK là phân giác  \(\widehat{PKQ}\) của tg cân KPQ 

=> AK là đường cao của tg KPQ (trong tg cân đường phân giác của góc ở đỉnh đồng thời là đường cao)

\(\Rightarrow AK\perp PQ\Rightarrow OA\perp PQ\) mà DE//PQ (cmt) \(\Rightarrow OA\perp DE\) (đpcm)

3/ Ta có

Xét tg vuông ABD có

\(\widehat{ABD}=90^o-\widehat{CAB}=90^o-60^o=30^o\)

\(\Rightarrow AD=\dfrac{AB}{2}\) (trong tg vuông cạnh đối diện với góc \(30^o\) bằng nửa cạnh huyền)

C/m tương tự khi xét tg vuông ACE ta cũng có \(AE=\dfrac{AC}{2}\)

Ta có

\(sđ\widehat{ADB}=30^o=\dfrac{1}{2}sđ\) cung AP => sđ cung AP\(=60^o\) = sđ cung AQ

Gọi I là giao của AK với PQ ta có

tg KPQ cân tại K (cmt)

\(AK\perp PQ\) (cmt)

=> IQ=IP (trong tg cân đường cao hạ từ đỉnh tg cân đồng thời là đường trung tuyến)

Xét tg vuông AQI có

\(sđ\widehat{AQI}=\dfrac{1}{2}sđ\) cung AP = \(30^o\Rightarrow AI=\dfrac{AQ}{2}\)  (trong tg vuông cạnh đối diện với góc 30 độ bằng nửa cạnh huyền)

Ta có \(\widehat{AQK}=90^o\) (góc nt chắn nửa đường tròn)

Xét tg vuông AQK có

\(AQ^2=AI.AK=\dfrac{AQ}{2}.2R\Rightarrow AQ=R\Rightarrow AI=\dfrac{AQ}{2}=\dfrac{R}{2}\) 

\(\Rightarrow IK=AK-AI=2R-\dfrac{R}{2}=\dfrac{3R}{2}\)

Ta có

\(IQ^2=IA.IK\) (trong tg vuông bình phươn đường cạo hạ từ đỉnh góc vuông xuống cạnh huyền bằng tích giữa hình chiếu của 2 cạnh góc vuông trên cạnh huyền)

\(\Rightarrow IQ^2=\dfrac{R}{2}.\dfrac{3R}{2}\Rightarrow IQ=\dfrac{R\sqrt{3}}{2}\)

Ta có 

IQ=IP (cmt) => PQ=2.IQ=\(R\sqrt{3}\)

Ta có ED là đường trung bình của tg HPQ (cmt)

\(\Rightarrow DE=\dfrac{PQ}{2}=\dfrac{R\sqrt{3}}{2}\)

Ta có

\(S_{ABC}=\dfrac{1}{2}.AB.AC.\sin\widehat{CAB}=\dfrac{1}{2}.AB.AC.\dfrac{\sqrt{3}}{2}=\dfrac{AB.AC.\sqrt{3}}{4}\)

\(S_{AED}=\dfrac{1}{2}.AD.AE.\sin\widehat{CAB}=\dfrac{1}{2}.\dfrac{AB}{2}.\dfrac{AC}{2}.\dfrac{\sqrt{3}}{2}=\dfrac{AB.AC.\sqrt{3}}{16}\)

\(\Rightarrow\dfrac{S_{AED}}{S_{ABC}}=\dfrac{1}{4}\)

Gọi R' là bán kính đường tròn ngoại tiếp tg AED

\(S_{AED}=\dfrac{AE.AD.DE}{4R'}=\dfrac{AC}{2}.\dfrac{AB}{2}.\dfrac{6\sqrt{3}}{2}.\dfrac{1}{4R'}=\dfrac{AB.AC.\sqrt{3}}{4}.\dfrac{3\sqrt{3}}{4R'}=\dfrac{S_{ABC}.3\sqrt{3}}{4R'}\)

   

\(\Rightarrow\dfrac{S_{AED}}{S_{ABC}}=\dfrac{3\sqrt{3}}{4R'}=\dfrac{1}{4}\Rightarrow R'=3\sqrt{3}\)

 

 

 

 

 

 

 

 

9 tháng 5 2021

giúp mình câu b với các bạn ơi

 

14 tháng 1 2019

A B C L' K O J E D I F L

Gọi I là tâm nội tiếp \(\Delta\)ABC, khi đó 3 điểm C,I,K  thẳng hàng. Gọi đường tròn ngoại tiếp \(\Delta\)AIE cắt tia CI tại điểm thứ hai F.

Xét \(\Delta\)CKA và \(\Delta\)CIB có: ^ACK = ^BCI (=^ACB/2); ^CAK = ^CBI (=^ABC/2) => \(\Delta\)CKA ~ \(\Delta\)CIB (g.g)

Suy ra: \(\frac{CK}{CI}=\frac{CA}{CB}\). Mà \(\frac{CA}{CB}=\frac{CD}{CA}\)(\(\Delta\)CAD ~ \(\Delta\)CBA) nên \(\frac{CK}{CI}=\frac{CD}{CA}\Rightarrow\frac{CK}{CD}=\frac{CI}{CA}\)

Lại có: CEA và CIF là 2 cát tuyến của (AIE) nên \(\frac{CI}{CA}=\frac{CE}{CF}\). Từ đó: \(\frac{CK}{CD}=\frac{CE}{CF}\)

Suy ra: \(\Delta\)CEK ~ \(\Delta\)CFD (c.g.c) => ^CEK = ^CFD. Nếu ta gọi 2 tia FD và EK cắt nhau ở L' thì ^CEL' = ^CFL'

=> Tứ giác CL'FE nội tiếp => ^ECF = ^EL'F => ^KCD = ^KL'D => Tứ giác CKDL' nội tiếp 

Áp dụng phương tích đường tròn có: FK.FC=FD.FL'   (1)

Cũng từ \(\Delta\)CKA ~ \(\Delta\)CIB (cmt) => ^BIF = ^AKI hay ^AKF = ^EIC => ^AKF = ^CAF

=> \(\Delta\)AFK ~ \(\Delta\)CFA (g.g)  => FA2 = FK.FC        (2)

Từ (1) và (2) => FA2 = FD.FL' => \(\Delta\)FDA ~ \(\Delta\)FAL' (c.g.c)

=> ^FL'A = ^FAD = ^DAC - ^FAC = ^ABC - ^FKA = ^ABC - (^KAC + ^ACK) = ^ABC/2 - ^ACB/2

Do đó: ^AL'E = ^FL'A + ^FL'E = ^ABC/2 - ^ACB/2 + ^ACB/2 = ^ABC/2 = ^ABE => Tứ giác ABL'E nội tiếp

Hay tia EK cắt đường tròn ngoại tiếp tam giác ABE tại L' => L' trùng L

Từ đó dễ có: ^BLC = ^ABC/2 + ^ACB + ^ABC/2 + ^BAC/2 = ^ABC + ^ACB + ^BAC/2 = 1800 - ^BAC/2

Vậy thì tâm của đường tròn (BLC) nằm tại điểm chính giữa cung BC chứa A của (O) (đpcm).

7 tháng 6 2021

a) Có \(\widehat{BFC}=\widehat{CKB}=90^0\)

=> Tứ giác BCFK nội tiếp

b)Có \(\widehat{BCK}=\widehat{BFK}\)( vì tứ giác BCFK nội tiếp )

mà \(\widehat{BCE}=\widehat{BDE}=\dfrac{1}{2}sđ\stackrel\frown{EB}\)

=> \(\widehat{BFK}=\widehat{BDE}\) mà hai góc nằm ở vị trí hai góc đồng vị

=> KF//DE

17 tháng 4 2017

Đáp án là C

a: góc HMC+góc HNC=180 độ

=>HMCN nội tiếp

b: góc CAD=góc NBC

=>1/2*sđ cung CD=1/2*sđ cung CE

=>CD=CE
c: góc BHM=góc BCN=1/2*sđ cung BA

góc BDH=1/2*sđ cung BA

=>góc BHD=góc BDH

=>ΔBHD cân tại B

Xét tứ giác BCDE có 

\(\widehat{BDC}=\widehat{BEC}=90^0\)

hay BCDE là tứ giác nội tiếp