K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 6 2022

Ta có:  x3 + y3 + 3xy(x+y) = (x+y)3(1)

     Mà x3 + y3 + 12xy = 64 (2)

Trừ vé với vế của (1) và (2), ta được:

3xy(x+y) - 12xy = (x+y)3 - 64

<=> 3xy(x + y - 4) = (x + y - 4)[(x + y)2 + 4(x +y) + 16)

<=> 3xy(x + y - 4) = (x + y - 4)(x2 + 2xy + y2 + 4x + 4y + 16)

<=> (x + y - 4)(x2 - xy + y2 + 4x + 4y + 16) = 0

<=> \(\left[{}\begin{matrix}x+y-4=0\\x^2-xy+y^2+4x+4y+16=0\end{matrix}\right.\)

<=> \(\left[{}\begin{matrix}x+y=4\left(1\right)\\4x^2-4xy+4y^2+16x+16y+64=0\left(2\right)\end{matrix}\right.\)

Ta thấy:

(2) <=>\(4x^2-4xy+y^2+8\left(2x+y\right)+16+3y^2+8y+48=0\)

     <=> \(\left(2x-y+4\right)^2+2y^2+8y+8+y^2+40=0\)

     <=> \(\left(2x-y+4\right)^2+2\left(y+2\right)^2+y^2+40=0\)

Vì \(\left(2x-y+4\right)^2;2\left(y+2\right)^2;y^2\ge0,\forall x,y\) (rõ như ban ngày)

=> \(\left(2x-y+4\right)^2+2\left(y+2\right)^2+y^2+40\ge40>0\)

=> Biểu thức (2) không có số thực x, y thỏa mãn. => Không tìm được x + y

Vậy x + y = 4.

1 tháng 6 2022

\(x^3++y^3+12xy=64\) (1)

\(\left(1\right)\Leftrightarrow x^3+y^3+\left(-4\right)^3-3xy\left(-4\right)=0\)

áp dụng

\(a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)\)

\(\left(1\right)\Leftrightarrow\left[x+y+\left(-4\right)\right]\left[x^2+y^2+\left(-4\right)^2-xy-y\left(-4\right)-x\left(-4\right)\right]=0\)

\(\Leftrightarrow\left(x+y-4\right)\left(x^2+y^2+16-xy+4y+4x\right)=0\) (2)

Xét \(x^2+y^2+16-xy+4y+4x=\) 

\(=x^2-\left(y-4\right)x+y^2+4y+16\)

\(\Delta=\left(y-4\right)^2-4\left(y^2+4y+16\right)=\)

\(=y^2-8y+16-4y^2-16y-64=\)

\(-3y^2-24y-48\) 

\(\Delta\) có

\(\delta=24^2-4.3.48=0\)

\(a=-3< 0\)

\(\Rightarrow\Delta< 0\forall y\)

\(\Rightarrow x^2-\left(y-4\right)x+y^2+4y+16\) có

\(\Delta< 0;a-1>0\)

\(\Rightarrow x^2-\left(y-4\right)x+y^2+4y+16>0\forall x\)

\(\Rightarrow\left(2\right)\Leftrightarrow x+y-4=0\Rightarrow x+y=4\)

 

 

 

a: (x+y+z)^3-x^3-y^3-z^3

=(x+y+z-x)(x^2+2xy+y^2-x^2-xy-xz+z^2)-(y+z)(y^2-yz+z^2)

=(x+y)(y+z)(x+z)

b: x^3+y^3+z^3=1

x+y+z=1

=>x+y=1-z

x^3+y^3+z^3=1

=>(x+y)^3+z^3-3xy(x+y)=1

=>(1-z)^3+z^3-3xy(1-z)=1

=>1-3z-3z^2-z^3+z^3-3xy(1-z)=1

=>1-3z+3z^2-3xy(1-z)=1

=>-3z+3z^2-3xy(1-z)=0

=>-3z(1-z)-3xy(1-z)=0

=>(z-1)(z+xy)=0

=>z=1 và xy=0

=>z=1 và x=0; y=0

A=1+0+0=1

16 tháng 2 2018

áp án B

Ta có: log 3 x + 1 y + 1 y + 1 = 9 − x − 1 y + 1 ⇔ y + 1 log 3 x + 1 y + 1 + x − 1 y + 1 = 9

⇔ y + 1 log 3 c + 1 y + 1 + x + 1 y + 1 − 2 y = 11

⇔ y + 1 log 3 c + 1 y + 1 − 2 = 9 − x + 1 y + 1       *

 Nếu   x + 1 y + 1 > 9 ⇒ V T * > 0 ;   V P * < 0

Ngược lại nếu   x + 1 y + 1 < 9 ⇒ V T * < 0 ;   V P * > 0

Do đó   * ⇔ x + 1 y + 1 = 9 ⇔ x y + x + y = 8

Khi đó   P = x + y 3 − 3 x y x + y − 57 x + y = x + y 3 − 3 8 − x − y x + y − 57 x + y

Đặt   t = x + y ≥ 2 ⇒ f t = t 3 − 3 8 − t t − 57 t = t 3 + 3 t 2 − 81 t

⇒ f ' t = 3 t 2 + 6 t − 81 = 0 ⇒ t = − 1 + 2 7 ⇒ P min = f − 1 + 2 7 = 83 − 112 7 ⇒ a + b = − 29

NV
28 tháng 12 2020

Không nhìn thấy bất cứ chữ nào của đề bài cả 

2 tháng 8 2018

22 tháng 11 2019

Đáp án B

Ta có

16 tháng 12 2018

Đáp án D.

Ta có

Khi đó

Đồng nhất hệ số, ta được

23 tháng 3 2019

Chọn đáp án D.

19 tháng 10 2018

Đáp án đúng : A

4 tháng 11 2017

Đáp án đúng : B

13 tháng 12 2019