Tập hợp các giá trị của x nguyên để biểu thức D=l2x+2,5l+l2x-3l đạt giá trị nhỏ nhất {........}
nhập theo giá trị tăng dần
xong đầu đánh tích
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Vì l 1/2-x l \(\ge0\) nên A đạt giá trị nhỏ nhất khi l 1/2-x l = 0
=> 1/2 -x =0 => x=1/2
2) Để B lớn nhất thì l 2x+2/3 l nhỏ nhất
=> l 2x + 2/3 l = 0
=> 2x + 2/3 = 0
=> 2x = -2/3
=> x = -1/3
1) ta có I 1/2 -xI\(\ge\)0
=>A=0,6+I 1/2 -xI\(\ge\)0,6
Dấu = xảy ra khi 1/2-x=0
x=1/2
Vậy GTNN của A là 0,6 tại x=1/2
2) ta có I2x+2/3I\(\ge\)0
=>-I2x+2/3I\(\le\)
=>B=2/3-I2x+2/3I\(\le\)2/3
Dấu = xảy ra khi 2x+2/3=0
2x =-2/3
x =-2/3:2
x =-1/3
Vậy GTLN của B là 2/3 tại x=-1/3
Để \(A=\)lx+2l+l1-xl đạt \(GTNN\Leftrightarrow A=0\)
\(A=0\Leftrightarrow\hept{\begin{cases}x-2=0\\1-x=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\x=1\end{cases}}}\)
Vậy để \(A=\)lx+2l+l1-xl đạt \(GTNN\Leftrightarrow x=2;1\)