K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NM
10 tháng 10 2021

ta có : 

undefined

4 tháng 2 2022

cóp mạng

Gọi số cần tìm là a ( a ∈ N* ; 99 < a < 1000 )

Theo bài ra , ta có :

\(\hept{\begin{cases}a-8⋮17\\a-16⋮25\end{cases}}\Rightarrow\hept{\begin{cases}\left(a-8\right)+17⋮17\\\left(a-16\right)+25⋮25\end{cases}}\Rightarrow\hept{\begin{cases}a+9⋮17\\a+9⋮25\end{cases}}\)

\(\Rightarrow a-9∈BC\left(17,25\right)\)

Vì 17 và 25 nguyên tố cùng nhau

=> BCNN( 17 . 25 )  = 17 . 25 = 425

=> BC( 17 , 25 ) = { 0 ; 425 ; 850 ; 1275 ; ... }

=> a + 9 ∈ { 0 ; 425 ; 850 ; 1275 ; ... }

=> a  ∈ { 416 ; 841 ; 1266 ; ... } ( do a ∈ N* )

Mà 99 < a  < 1000

=> a  ∈ { 416 ; 841 }

31 tháng 7 2017

Gọi số tự nhiên có ba chữ số cần tìm là \(n\)

Ta có:

\(n:17\left(R=8\right)\Rightarrow\left(n+9\right)⋮17\)

\(n:25\left(R=16\right)\Rightarrow\left(n+9\right)⋮25\)

\(\Rightarrow\left(n+9\right)⋮\left(17;25\right)\Leftrightarrow\left(n+9\right)=BCNN\left(17,25\right)\Leftrightarrow\left(n+9\right)=425\)

\(\Rightarrow n+9=425\)

\(\Rightarrow n=416\)

31 tháng 7 2017

Gọi số tự nhiên cần tìm đó là x ; \(x\in N\)

Ta có : \(x-8⋮17\)\(x-16⋮25\)và \(100< x< 1000\)

\(\Rightarrow x+9⋮17\)và \(x+9⋮25\) \(\Rightarrow x+9\in BC\left(17,25\right)\)và \(100< x< 1000\)

\(BCNN\left(17,25\right)=425\)và \(BC\left(17,25\right)=\left\{0;425;850;....\right\}\)

Với \(x+9=425\Rightarrow x=425-9=416\)

Với \(x+9=850\Rightarrow x=850-9=841\)

\(\Rightarrow\)số tự nhiên có 3 chữ số cần tìm là 416 và 841 

25 tháng 3 2015

Ta có nhận xét như sau :

Nếu 1 số n chia cho a, dư b thì (n - b) sẽ chia hết cho a

VD : 8 chia 3 dư 2, vậy 8 - 2 = 6 chia hết cho 3

Quay trở lại bài toán

Gọi số cần tìm là n.

Ta có n - 7 sẽ chia hết cho cả 11, 13, 17, tức là chia hết cho 11x13x17 = 2431

Do số 2431 chưa phải là số lớn nhất có 4 chữ số, ta tăng số n - 7 lên cho gần tới 9999

9999 : 2431 = 4 dư 275. Suy ra n - 7 = 2431 x 4 = 9724. Vậy n = 9724 + 7 = 9731

20 tháng 4 2015

Gọi số cần tìm là a(a\(\in N\)*)

Theo đề bài ta có:

a=11.t+7=13.q+7=17.k+7

=>a-7 chia hết cho 11,13 và 17

=>a-7\(\in\)BC(11;13;17) mà BCNN(11;13;17)=2431=>a-7\(\in\)BC(11;13;17)={0;2431;4862;7293;9724}

Do a\(\in\)N*=>a\(\in\){2438;4869;7300;9731}

Lại do a là số lớn nhất có 4 chữ số=>a=9731

Vậy số đó là 9731