K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 5 2022

\(\dfrac{1}{3}x+\dfrac{2}{3}\left(x-1\right)=0\\ \dfrac{1}{3}x+\dfrac{2}{3}x-\dfrac{2}{3}=0\\ x=\dfrac{2}{3}\)

29 tháng 5 2022

`1/3x + 2/3(x-1) =0`

` 1/3x + 2/3x -2/3 = 0`

` ( 1/3 + 2/3) x -2/3 = 0`

` 3/3x -2/3 = 0`

` 1x-2/3 = 0`

`1/x = 0 + 2/3`

` 1x = 2/3`

` x = 2/3`

28 tháng 5 2021

Xét \(\Delta=4\left(m-1\right)^2-4.\left(-3\right)=4\left(m-1\right)^2+12>0\forall m\)

=>Pt luôn có hai nghiệm pb

Theo viet:\(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1.x_2=-3\ne0\forall m\end{matrix}\right.\)

Có \(\dfrac{x_1}{x_2^2}+\dfrac{x_2}{x_1^2}=m-1\)

\(\Leftrightarrow x_1^3+x_2^3=\left(m-1\right)x_1^2.x_2^2\)

\(\Leftrightarrow\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)=\left(m-1\right).\left(-3\right)^2\)

\(\Leftrightarrow8\left(m-1\right)^3-3\left(-3\right).2\left(m-1\right)=9\left(m-1\right)\)

\(\Leftrightarrow8\left(m-1\right)^3+9\left(m-1\right)=0\)

\(\Leftrightarrow\left(m-1\right)\left[8\left(m-1\right)^2+9\right]=0\)

\(\Leftrightarrow m=1\)(do \(8\left(m-1\right)^2+9>0\) với mọi m)

Vậy m=1

Vì \(ac< 0\) \(\Rightarrow\) Phương trình luôn có 2 nghiệm phân biệt

Theo Vi-ét, ta có: \(\left\{{}\begin{matrix}x_1+x_2=2m-2\\x_1x_2=-3\end{matrix}\right.\)

Mặt khác: \(\dfrac{x_1}{x_2^2}+\dfrac{x_2}{x_1^2}=m-1\) \(\Rightarrow\dfrac{\left(x_1+x_2\right)\left(x_1^2+x_2^2-x_1x_2\right)}{x_1^2x_2^2}=m-1\)

  \(\Leftrightarrow\dfrac{\left(x_1+x_2\right)\left[\left(x_1+x_2\right)^2-3x_1x_2\right]}{x_1^2x_2^2}=m-1\)

  \(\Rightarrow\dfrac{\left(2m-2\right)\left(4m^2-8m+13\right)}{9}=m-1\)

  \(\Leftrightarrow...\)  

 

Ta có: \(\Delta=\left[-2\left(m-1\right)\right]^2-4\cdot1\cdot\left(m+1\right)\)

\(=\left(-2m+2\right)^2-4\left(m+1\right)\)

\(=4m^2-8m+4-4m-4\)

\(=4m^2-12m\)

Để phương trình có nghiệm thì \(\text{Δ}\ge0\)

\(\Leftrightarrow4m^2-12m\ge0\)

\(\Leftrightarrow4m\left(m-3\right)\ge0\)

\(\Leftrightarrow m\left(m-3\right)\ge0\)

\(\Leftrightarrow\left[{}\begin{matrix}m\ge3\\m\le0\end{matrix}\right.\)

Khi \(\left[{}\begin{matrix}m\ge3\\m\le0\end{matrix}\right.\), Áp dụng hệ thức Vi-et, ta có:

\(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)=2m-2\\x_1\cdot x_2=m+1\end{matrix}\right.\)

Ta có: \(\dfrac{x_1}{x_2}+\dfrac{x_2}{x_1}=4\)

\(\Leftrightarrow\dfrac{x_1^2+x_2^2}{x_1\cdot x_2}=4\)

\(\Leftrightarrow\dfrac{\left(x_1+x_2\right)^2-2x_1x_2}{x_1x_2}=4\)

\(\Leftrightarrow\dfrac{\left(2m-2\right)^2-2\cdot\left(m+1\right)}{m+1}=4\)

\(\Leftrightarrow4m^2-8m+4-2m-2=4\left(m+1\right)\)

\(\Leftrightarrow4m^2-10m+2-4m-4=0\)

\(\Leftrightarrow4m^2-14m-2=0\)

Đến đây bạn tự làm nhé, chỉ cần tìm m và đối chiều với điều kiện thôi

30 tháng 3 2021

Pt có 2 nghiệm

\(\to \Delta=[-2(m-1)]^2-4.1.(m+1)=4m^2-8m+4-4m-4=4m^2-12m\ge 0\)

\(\leftrightarrow m^2-3m\ge 0\)

\(\leftrightarrow m(m-3)\ge 0\)

\(\leftrightarrow \begin{cases}m\ge 0\\m-3\ge 0\end{cases}\quad or\quad \begin{cases}m\le 0\\m-3\le 0\end{cases}\)

\(\leftrightarrow m\ge 3\quad or\quad m\le 0\)

Theo Viét

\(\begin{cases}x_1+x_2=2(m-1)\\x_1x_2=m+1\end{cases}\)

\(\dfrac{x_1}{x_2}+\dfrac{x_2}{x_1}=4\)

\(\leftrightarrow \dfrac{x_1^2+x_2^2}{x_1x_2}=4\)

\(\leftrightarrow \dfrac{(x_1+x_2)^2-2x_1x_2}{x_1x_2}=4\)

\(\leftrightarrow \dfrac{[2(m-1)]^2-2.(m+1)}{m+1}=4\)

\(\leftrightarrow 4m^2-8m+4-2m-2=4(m+1)\)

\(\leftrightarrow 4m^2-10m+2-4m-4=0\)

\(\leftrightarrow 4m^2-14m-2=0\)

\(\leftrightarrow 2m^2-7m-1=0 (*)\)

\(\Delta_{*}=(-7)^2-4.2.(-1)=49+8=57>0\)

\(\to\) Pt (*) có 2 nghiệm phân biệt

\(m_1=\dfrac{7+\sqrt{57}}{2}(TM)\)

\(m_2=\dfrac{7-\sqrt{57}}{2}(TM)\)

Vậy \(m=\dfrac{7\pm \sqrt{57}}{2}\) thỏa mãn hệ thức

NV
8 tháng 5 2021

\(\Delta'=\left(m+1\right)^2-5\ge0\Leftrightarrow m^2+2m-4\ge0\) (1)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)\\x_1x_2=5\end{matrix}\right.\)

\(\dfrac{1}{\left|x_1\right|}+\dfrac{1}{\left|x_2\right|}=2\Leftrightarrow\dfrac{\left|x_1\right|+\left|x_2\right|}{\left|x_1x_2\right|}=2\)

\(\Leftrightarrow\left|x_1\right|+\left|x_2\right|=2\left|x_1x_2\right|=10\)

\(\Leftrightarrow x_1^2+x_2^2+2\left|x_1x_2\right|=100\)

\(\Leftrightarrow x_1^2+x_2^2+10=100\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=90\)

\(\Leftrightarrow4\left(m+1\right)^2-10=90\)

\(\Leftrightarrow\left(m+1\right)^2=25\Rightarrow\left[{}\begin{matrix}m=4\\m=-6\end{matrix}\right.\) 

Thế vào (1) kiểm tra thấy đều thỏa mãn, vậy...

8 tháng 5 2021

dạ pt có 2 nghiệm là chỉ lớn hơn không thôi chứ thầy sao có bằng 0 ạ

 

NV
22 tháng 12 2020

Chắc đề bài là \(Q=\dfrac{3}{9x^2+6xy+y^2}+\dfrac{3}{3x^2+6xy+2y^2}\)

Từ giả thiết ta có:

\(2x^3+2xy^2+xy^2+y^3=2\left(x^2+y^2\right)\)

\(\Leftrightarrow2x\left(x^2+y^2\right)+y\left(x^2+y^2\right)=2\left(x^2+y^2\right)\)

\(\Leftrightarrow2x+y=2\)

Do đó:

\(Q=3\left(\dfrac{1}{9x^2+6xy+y^2}+\dfrac{1}{3x^2+6xy+2y^2}\right)\)

\(Q\ge\dfrac{3.4}{12x^2+12xy+3y^2}=\dfrac{4}{\left(2x+y\right)^2}=1\)

\(Q_{min}=1\) khi \(\left\{{}\begin{matrix}2x+y=2\\9x^2+6xy+y^2=3x^2+6xy+2y^2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=\sqrt{6}-2\\y=6-2\sqrt{6}\end{matrix}\right.\)

Không có dấu "=" hay như nào đâu giải tìm x được

3 tháng 5 2021

ko có dấu bằng

12 tháng 3 2022

a)4/5+x=2/3

x=2/3-4/5

x=-2/15

b)-5/6-x=2/3

x=-5/6-2/3

x=-3/2

c)1/2x+3/4=-3/10

1/2x=-3/10-3/4

1/2x=-21/20

x=-21/20:1/2

x=-21/10

d)x/3-1/2=1/5

x/3=1/5+1/2

x/3=7/10

10x/30=21/30

10x=21

x=21:10

x=21/10

23 tháng 2 2023

a, \(\dfrac{x-1}{21}\) = \(\dfrac{3}{x+1}\)

   ( x-1)(x+1) = 21.3

    x2 + x - x -1 = 63

     x2                = 63 + 1

     x2               = 64

    x = + - 8

b, 2\(\dfrac{1}{2}\)x + x = 2\(\dfrac{1}{17}\)

        x( \(\dfrac{5}{2}\) + 1) = \(\dfrac{35}{17}\)

       x              = \(\dfrac{35}{17}\) : ( \(\dfrac{5}{2}\)+1)

       x             = \(\dfrac{35}{17}\) x \(\dfrac{2}{7}\)

       x            = \(\dfrac{10}{17}\)

c, (x + \(\dfrac{1}{4}\) - \(\dfrac{2}{3}\) ) : ( 2 + \(\dfrac{1}{6}\) - \(\dfrac{1}{4}\)) = \(\dfrac{7}{46}\)

   (x  - \(\dfrac{5}{12}\)):  \(\dfrac{23}{12}\)                     =   \(\dfrac{7}{46}\)

  (x - \(\dfrac{5}{12}\))                               =   \(\dfrac{7}{46}\) x \(\dfrac{23}{12}\)

  x   - \(\dfrac{5}{12}\)                                =    \(\dfrac{7}{12}\)

 x                                            =    \(\dfrac{7}{12}\) + \(\dfrac{5}{12}\)

x                                             =     1

d, 2\(\dfrac{1}{3}\)x - 1\(\dfrac{3}{4}\)x + \(2\dfrac{2}{3}\)  = 3\(\dfrac{3}{5}\)

   x( \(\dfrac{7}{3}\) - \(\dfrac{7}{4}\)) + \(\dfrac{8}{3}\)      =  \(\dfrac{18}{5}\)

   x\(\dfrac{7}{12}\)                    = \(\dfrac{18}{5}\) - \(\dfrac{8}{3}\)

   x\(\dfrac{7}{12}\)                   = \(\dfrac{14}{15}\)

  x                         = \(\dfrac{14}{15}\) : \(\dfrac{7}{12}\)

 x                          = \(\dfrac{8}{5}\)