Cho hình chóp \(S.ABC\) có đáy \(ABC\) là tam giác vuông cân tại \(A\), \(\widehat{BAC}=120^o\), \(AB=AC=a\). Tam giác \(SAB\) vuông tại \(B\), tam giác \(SAC\) vuông tại \(C\), góc giữa hai mặt phẳng \(\left(SAB\right)\) và \(\left(ABC\right)\) bằng \(60^o\). Gọi \(H\) là hình chiếu vuông góc của điểm \(S\) lên mặt phẳng \(\left(ABC\right)\). Chứng minh rằng \(HB\) vuông góc \(AB\) và tính thể tích khối chóp \(S.ABC\) theo \(a\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi H là trung điểm của AB.
∆ S A B đều và nằm trong mặt phẳng vuông góc với
Chọn D.
Đáp án C
Gọi H là trung điểm AC. Ta có tam giác SAC cân tại S và nằm trong mặt phẳng vuông góc với (ABC)
suy ra S H ⊥ A B C
Ta có
S B , A B C = S B H ^ = 45 o ⇒ S H = B H = 1 2 A C = a 2 2 V S . A B C = 1 3 . a 2 2 . 1 2 a 2 = a 3 2 12
Đáp án A
Dựng điểm D sao cho ABCD là hình vuông khi đó:
AB song song với (SDC)
=> khoảng cách giữa AB và SC
Bằng khoảng cách giữa AB và (SDC)
Gọi M,N lần lượt là trung điểm AB và DC ta có MN song song với AC nên MN vuông góc với AB. mà
SM vuông góc với AB nên AB vuông góc với (SMN). Do CD song song với AB nên CD vuông góc với (SMN) suy ra (SDC) vuông góc với (SMN)
Vì SN là giao tuyến của hai mặt phẳng trên => Kẻ MH vuông góc với SN thì MH là khoảng cách cần tìm.