Tìm số có 2 chữ số bíêt tổng của số đó và số đó viết theo thứ tự ngược lại là số chính phương??
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số cần tìm là ab (a khác 0; a,b < 10)
ta có:ab + ba = 10a + b + 10b + aq = 11a + 11b = 11(a + b)
Vì a + b là số chính phương nên a + b chia hết cho 11.
mà 1\(\le\) a<10
0\(\le\) b<10
=> 1\(\le\) a+b<20
=>a+b=11
ta có bảng sau:
\(<table border="1" cellspacing="1" cellpadding="1" style="width:500px"><tbody><tr><td>a</td><td>2</td><td>3</td><td>4</td><td>5</td><td>6</td><td>7</td><td>8</td><td>9</td></tr><tr><td>b</td><td>9</td><td>8</td><td>7</td><td>6</td><td>5</td><td>4</td><td>3</td><td>2</td></tr></tbody></table>\)
=> có 8 số thỏa mãn đề a
làm nhanh qua
theo đề ta coá: ab+ba=k2
=>11a+11b=k2
=>11.(a+b)=k2
=>a+b=11 thì 11(a+b) mới là số chính phương
=>các số cần tìm: 29;38;47;56;65;74;83;92
Gọi số cần tìm thứ 1 là a, số thứ 2 là b (đk 10>a,b>0)
Ta có: ab+ba
hay 10a+b+10b+a
=11a+11b=11(a+b)
Vì a+b là số chinh phương
\(\Rightarrow a+b⋮11\)
mà 10>a,b>0
\(\Rightarrow1\le a,b< 20\)
\(\Rightarrow a+b=11\)
Ta có bảng sau:
a | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
b | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 |
Vậy các cặp số (a;b) thỏa mãn đề bài là (2;9);(3;8);(4;7);(5;6);(6;5);(7;4);(8;3);(9;2)
Bạn nhấn vào dòng chữ xanh này nha:
Tìm số tự nhiên có hai chữ số sao cho hiệu của số đó với số viết theo thứ tự ngược lại là số chính phương
36 và 4
36 = 6 x 6
4 = 2 x 2
36 + 4 = 40 = 04 = 2 x 2
ko biết thì đừng trả lời