Cho a+d=b+d và a2 + d2 = b2 +c2 (b,d khác 0). Chứng minh rằng 4 số a, b, c, d có thể lập thành 1 tỉ lệ thức.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn đánh lại đề đi, Để ghi dấu mũ bạn ấn nút "x2" trên thanh công cụ, sau khi bạn gõ xong dấu mũ rồi bạn ấn lại nó để đưa về trạng thái thường
\(\frac{\left(a+b\right)2}{\left(c+d\right)2}=\frac{2a+2b}{2c+2d}\)
Vậy \(\frac{\left(a+b\right)2}{\left(c+d\right)2}=\frac{2a+2b}{2c+2d}\)
đặt a/b=c/d=k=>a=bk;c=dk
=>\(\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{\left(bk+b\right)^2}{\left(dk+d\right)^2}=\frac{\left(b\left(k+1\right)\right)^2}{\left(d\left(k+1\right)\right)^2}=\frac{b^2}{d^2}\) (1)
\(\frac{a^2+b^2}{c^2+d^2}=\frac{\left(bk\right)^2+b^2}{\left(dk\right)^2+d^2}=\frac{b^2.k^2+b^2}{d^2.k^2+d^2}=\frac{b^2.\left(k^2+1\right)}{d^2.\left(k^2+1\right)}=\frac{b^2}{d^2}\) (2)
từ (1) và (2)=>đpcm
tick nhé
Ta có : a2 + b2 = c2 + d2
⇒a2 + b2 + c2 + d2 = 2 ( a2 + b2 ) ⋮2 nên là hợp số
Ta có : a2 + b2 + c2 + d2 - ( a + b + c + d )
= a ( a - 1 ) + b ( b - 1 ) + c ( c - 1 ) + d ( d - 1 ) ⋮2
⇒a + b + c + d ⋮2 nên cũng là hợp số
Ta có a + d = b + c \(\Rightarrow\) (a + d)2 = (b + c)2 \(\Rightarrow\) a2 + 2ad + d2 = b2 + 2bc + c2 (1)
Vì a2 + d2 = b2 nên từ (1) suy ra 2ad = 2bc
hay ad = bc \(\Rightarrow\) \(\frac{a}{b}=\frac{c}{d}\) (đpcm)
gõ nhanh tới mấy mà dùng fx nữa phải trên 1 phút, chưa kể dùng x2
Ta có :a/b = c/d suy ra a/c = b/d
Aps dụng tính chất dãy tính chất tỉ số bừng nhau
a/c =b/d = a+b/c+d = a-b/c-d suy ra a+b/a-b = c+d/c-d
Refer:
a² + b² + c² + d² + e² ≥ a(b + c + d + e)
Ta có: a² + b² + c² + d² + e²= (a²/4 + b²) + (a²/4 + c²) + (a²/4 + d²) + (a²/4 + e²)
Lại có: (a/2 - b)² ≥ 0 <=> a²/4 - ab + b² ≥ 0 <=> a²/4 + b² ≥ ab
Tương tự ta có:. a²/4 + c² ≥ ac.
a²/4 + d² ≥ ad.
a²/4 + e² ≥ ae
--> (a²/4 + b²) + (a²/4 + c²) + (a²/4 + d²) + (a²/4 + e²) ≥ ab + ac + ad + ae
<=> a² + b² + c² + d² + e² ≥ a(b + c + d + e)
=> đpcm.
Dấu " = " xảy ra <=> a/2 = b = c = d = e.
\(a+d=b+c\Rightarrow\left(a+d\right)^2=\left(b+c\right)^2\Rightarrow a^2+d^2+2ad=b^2+c^2+2bc.\)
Do \(a^2+d^2=b^2+c^2\Rightarrow2ad=2bc\Rightarrow ad=bc\Rightarrow\frac{a}{b}=\frac{c}{d}\)