cho tam giác ABC có B là góc tù, điểm D di chuyển trên cạnh BC. xác định vị trí của điểm D soa cho tổng các khoảng cách từ B và từ C đến đường thẳng Ad có giá trị lớn nhất
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
BH vuong goc voi AM=>BH=<BM
CE vuong goc voi AM=>CE=<CM
=>BH+CE=<BM+CM
=>d=<BC
Dau bang xay ra khi BH=BM; CE=CM
=>AM vuong goc voi BC
Mình nói trước là mình mới học dạng này nên không chắc đâu nhé! Nhất là cái dấu "=" ấy, nó rất khó để giải thích và có thể sai. Nếu bạn dùng geogebra thì sẽ dễ hiểu hơn.
Đặt BC = a = const (hằng số)
Xét trường hợp E và F không trùng D. Khi đó theo quan hệ giữa đường vuông góc và đường xiên thì:
BE + CF < BD + CD = BC (1)
Nếu E và F trùng D thì BE + CF = BC (2)
Từ (1) và (2) suy ra \(BE+CF\le BC=const\)
Đẳng thức xảy ra khi E và F trùng D khi đó D là trung điểm BC và tam giác ABC cân tại A.
tth làm không đúng rồi.
Ta có E là hình chiếu của B lên AD
F là hình chiếu của CAD
=> \(BC=BD+DC\ge BE+CF\)
Dấu "=" xảy ra khi và chỉ khi \(E\equiv D\equiv F\)
khi đó: \(BD\perp AD;CD\perp AD\)=> D là chân đường cao hạ từ A đến BC
Vậy D là chân đường cao hạ từ A đến BC thì BE+CF đạt giá trị lớn nhất bằng BC
d = BH + CK
a) Ta có: BH là đoạn vuông góc kẻ từ B đến đường thẳng AM => BH là đoạn ngắn nhất kẻ từ B đến đường thẳng AM
M thuộc đường thẳng AM
=> BH \(\le\) BM (1)
Tương tự, ta có: CK là đoạn vuông góc kẻ từ C đến đường thẳng AM => CK là đoạn ngắn nhất kẻ từ C đến AM
=> CK \(\le\) CM (2)
Từ (1)(2) => d = BH + CK \(\le\) BM + CM = BC
Dấu "=" xảy ra khi dấu "=" ở (1) và (2) xảy ra <=> BH = BM và CK = CM
=> BM và CM vuông góc với AM => BC vuông góc với AM
Khi đó d = BC có giá trị lớn nhất
vậy Khi M là chân đường vuông góc hạ từ A xuống BC thì d lớn nhất
với tam giác ABC , cho góc B và góc C là góc nhọn
gọi d là tổng khoảng cách từ B và C đến đường thẳng AM, BD vuông góc AM , AH vuông góc BC..
ta có : giá trị lớn nhất của d = BC
<=> BD=BM ; CE=CM
<=> D trùng với M và E trùng với M
<=> M trùng với hình chiếu H của A trên BC
Vậy vị trí của M để có tổng các khoảng cách từ B và C đến AM lớn nhất là khi M trùng với hình chiếu H của A trên BC.